Paper | Title | Other Keywords | Page |
---|---|---|---|
MOMPL001 | Quality Assurance Plan for the SCADA System of the Cherenkov Telescope Array Observatory | software, controls, operation, target | 121 |
|
|||
The Cherenkov Telescope Array is the future ground-based facility for gamma-ray astronomy at very-high energies. The CTA Observatory will comprise more than 100 telescopes and calibration devices that need to be centrally managed and synchronized to perform the required scientific and technical activities. The operation of the array requires a complex Supervisory Control and Data Acquisition (SCADA) system, named Array Control and Data Acquisition (ACADA), whose quality level is crucial for maximizing the efficiency of the CTA operations. In this contribution we aim to present the Quality Assurance (QA) strategy adopted by the ACADA team to fulfill the quality standards required for the creation and usage of ACADA software. We will describe the QA organization and planned activities, together with the quality models and the related metrics defined to comply with the required quality standards. We will describe the procedures, methods and tools which will be applied in order to guarantee, that for each phase of the project, the required level of quality in the design, implementation, testing, integration, configuration, usage and maintenance of the ACADA product are met. | |||
![]() |
Poster MOMPL001 [1.425 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPL001 | ||
About • | paper received ※ 25 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA034 | Software Architecture for Next Generation Beam Position Monitors at Fermilab | software, hardware, interface, Linux | 275 |
|
|||
Funding: This work was supported by the DOE contract No. DEAC02-07CH11359 to the Fermi Research Alliance LLC. The Fermilab Accelerator Division / Instrumentation Department develops Beam Position Monitor (BPM) systems in-house to support its sprawling accelerator complex. Two new BPM systems have been deployed and another upgraded over the last two years. These systems are based on a combination of VME and Gigabit Ethernet connected hardware and a common Linux-based embedded software platform with modular components. The architecture of this software platform and the considerations for adapting to future machines or upgrade projects will be described. |
|||
![]() |
Poster MOPHA034 [1.424 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA034 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 08 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA058 | Lua-Language-Based Data Acquisition Processing EPICS Subscription Filters | EPICS, timing, factory, site | 342 |
|
|||
Funding: Work supported by US Department of Energy under contract DE-AC52-06NA25396. A previous paper described an upgrade to EPICS enabling client side tools at LANSCE to receive subscription updates filtered selectively to match a logical configuration of LANSCE beam gates, as specified dynamically by control room application programs. This update paper will examine evolving enhancements enabling Lua-language based data acquisition processing subscription update filters, specified by snippets of Lua-language source-code embedded within the EPICS channel-name’s postfix. We will discuss the generalized utility of this approach across a wide range of data acquisition applications, projects, and platforms; the performance and robustness of our production implementation; and our operational experience with the software at LANSCE. |
|||
![]() |
Poster MOPHA058 [0.881 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA058 | ||
About • | paper received ※ 01 October 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA092 | Prototyping the Resource Manager and Central Control System for the Cherenkov Telescope Array | controls, operation, software, status | 426 |
|
|||
The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for gamma-ray astronomy at very-high energies. CTA will consist of two large arrays with 118 Cherenkov telescopes in total, deployed in Paranal (Chile) and Roque de Los Muchachos Observatories (Canary Islands, Spain). The Array Control and Data Acquisition (ACADA) system provides the means to execute observations and to handle the acquisition of scientific data in CTA. The Resource Manager & Central Control (RM&CC) sub-system is a core element in the ACADA system. It implements the execution of observation requests received from the scheduler sub-system and provides infrastructure services concerning the administration of various resources to all ACADA sub-systems. The RM&CC is also responsible of the dynamic allocation and management of concurrent operations of up to nine telescope sub-arrays, which are logical groupings of individual CTA telescopes performing coordinated scientific operations. This contribution presents a summary of the main RM&CC design features, and of the future plans for prototyping. | |||
![]() |
Poster MOPHA092 [1.595 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA092 | ||
About • | paper received ※ 18 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA164 | Wire Scanner for High Intensity Beam Profile Diagnostics | controls, software, electron, EPICS | 622 |
|
|||
A control and data acquisition system of a high speed wire scanner is developed for high intensity beam profile diagnostics. The control system of the wire scanner includes two IOCs, a Soft IOC and a VME IOC. The Soft IOC connects with an Aerotech Ensemble motor drive through EPCIS motor record and controls the movement of the wire scanner. An Electrical Input card samples the real-time position of the wire through an incremental encoder, and generates a pulse to synchronize a VME ADC data acquisition card, which digitizes and samples the beam-induced signal after pre-amplification. A VME Relay Output card is installed to control the Brake Solenoid and Actuator Solenoid. All the VME I/O cards are installed on one VME crate and controlled by the VME IOC. The system configuration and software of the wire scanner are under development.
Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. |
|||
![]() |
Poster MOPHA164 [0.973 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA164 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUDPP02 | Data Acquisition System for the APS Upgrade | EPICS, real-time, controls, interface | 841 |
|
|||
Funding: Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357 APS Upgrade multi-bend achromat accelerator (MBA) uses state-of-the-art embedded controllers coupled to various technical subsystems. These controllers have the capability to collect large amounts of fast data for statistics, diagnostics, or fault recording. At times, continuous real-time acquisition of this data is preferred, which presents a number of challenges that must be considered early on in the design; such as network architecture, data management and storage, real-time processing, and impact on normal operations. The design goal is selectable acquisition of turn-by-turn BPM data, together with additional fast diagnostics data. In this paper we discuss engineering specifications and the design of the MBA Data Acquisition System (DAQ). This system will interface with several technical subsystems to provide time-correlated and synchronously sampled data acquisition for commissioning, troubleshooting, performance monitoring and fault detection. Since most of these subsystems will be new designs for the MBA, defining the functionality and interfaces to the DAQ early in the development will ensure the necessary components are included in a consistent and systematic way. |
|||
![]() |
Slides TUDPP02 [13.915 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUDPP02 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEMPR001 | Data Analysis Infrastructure for Diamond Light Source Macromolecular & Chemical Crystallography and Beyond | experiment, detector, database, monitoring | 1031 |
|
|||
The Diamond Light Source data analysis infrastructure, Zocalo, is built on a messaging framework. Analysis tasks are processed by a scalable pool of workers running on cluster nodes. Results can be written to a common file system, sent to another worker for further downstream processing and/or streamed to a LIMS. Zocalo allows increased parallelization of computationally expensive tasks and makes the use of computational resources more efficient. The infrastructure is low-latency, fault-tolerant, and allows for highly dynamic data processing. Moving away from static workflows expressed in shell scripts we can easily re-trigger processing tasks in the event that an issue is found. It allows users to re-run tasks with additional input and ensures that automatically and manually triggered processing results are treated equally. Zocalo was originally conceived to cope with the additional demand on infrastructure by the introduction of Eiger detectors with up to 18 Mpixels and running at up to 560 Hz framerate on single crystal diffraction beamlines. We are now adapting Zocalo to manage processing tasks for ptychography, tomography, cryo-EM, and serial crystallography workloads. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR001 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA019 | MONARC: Supervising the Archiving Infrastructure of CERN Control Systems | database, controls, SCADA, monitoring | 1111 |
|
|||
The CERN industrial control systems, using WinCC OA as SCADA (Supervisory Control and Data Acquisition), share a common history data archiving system relying on an Oracle infrastructure. It consists of 2 clusters of two nodes for a total of more than 250 schemas. Due to the large number of schemas and of the shared nature of the infrastructure, three basic needs arose: (1) monitor, i.e. get the inventory of all DB nodes and schemas along with their configurations such as the type of partitioning and their retention period; (2) control, i.e. parameterise each schema individually; and (3) supervise, i.e. have an overview of the health of the infrastructure and be notified of misbehaving schemas or database node. In this publication, we are presenting a way to monitor, control and supervise the data archiving system based on a classical SCADA system. The paper is organized in three parts: the first part presents the main functionalities of the application, while the second part digs into its architecture and implementation. The third part presents a set of use cases demonstrating the benefit of using the application. | |||
![]() |
Poster WEPHA019 [2.556 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA019 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA033 | Construction and Implementation of Control and DAQ System of Micro Crystallography (MX) Beamline via Server Virtualization | network, EPICS, controls, software | 1149 |
|
|||
The project aimed to implement a beamline control and data collection system through a server virtualization system, and was applied to the 5C beamline of the 3rd generation beamline of Pohang Accelerator Laboratory (PAL). The 5C beamline is currently under construction for the FBDD beamline with the goal of building a fully automated beamline. Therefore, the project was started to operate stably and efficiently various systems to be applied to the beamline. The control system was implemented using EPICS software tools and MxDC/MxLive software for data acquisition and storage. The control and data collection system of this beamline is integrated using XCP-ng[1] (XenServer Based), and it is in operation. With the integrated server virtualization system, network organization / simplification and data send/receive between systems are more stabilized. The overall size of the system has been significantly reduced, making maintenance easier. | |||
![]() |
Poster WEPHA033 [0.860 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA033 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA045 | Data Acquisition Strategy and Developments at MAX IV | detector, controls, experiment, TANGO | 1190 |
|
|||
The experimental capabilities at the MAX IV synchrotron consists of 17 beamlines at full capacity. Each beamline puts different requirements on the control system in terms of data acquisition, high performance, data volume, pre-processing needs, and fast experiment feedback and online visualization. Therefore, high demands are put on the data management systems, and the reliability and performance of these systems has a big impact on the overall success of the facility. At MAX IV we have started the DataStaMP (Data Storage and Management Project) with the aim of providing a unified and reliable solution for all data sources in our facility. This work presents the control system aspects of the project. It is initially aimed at providing data management solution for a selected number of detectors and beamlines. It is developed in a modular and scalable architecture and combines several programming languages and frameworks. All the software runs in a dedicated cluster and communicates with the experimental stations through high performance networks, using gRPC to talk to the control system and ZMQ for retrieving the data stream. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA045 | ||
About • | paper received ※ 17 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA060 | Future Acquisition Architecture Investigations at Diamond | software, framework, controls, experiment | 1240 |
|
|||
At Diamond we are reviewing the current stack of in-house Software Applications that are used to control our beamline experiments and analyse the data produced by them. We intend to use this process of analysis and investigation to formulate proposals for a revised architecture to address the issues with the existing architecture, making use of the opportunities presented by modern technologies and methods, where appropriate. In doing so we hope to design a more flexible and maintainable system which addresses technical debt and functional limitations that have built up over the lifetime of our current software. This will allow us to go on to implement a powerful acquisition and analysis system to be used with the new facilities of Diamond II. | |||
![]() |
Poster WEPHA060 [0.779 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA060 | ||
About • | paper received ※ 01 October 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA125 | Integrating IoT Devices Into the CERN Control and Monitoring Platform | monitoring, controls, simulation, framework | 1385 |
|
|||
The CERN Control and Monitoring Platform (C2MON) offers interesting features required in the industrial controls domain to support Internet of Things (IoT) scenarios. This paper aims to highlight the main advantages of a cloud deployment solution, in order to support large-scale embedded data acquisition and edge computing. Several IoT use cases will be explained, illustrated by real examples carried out in collaboration with CERN Knowledge Transfer programme. | |||
![]() |
Poster WEPHA125 [1.854 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA125 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 20 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA161 | Revisiting the Bunch-Synchronized Data Acquisition System for the European XFEL Accelerator | controls, FEL, electron, interface | 1460 |
|
|||
After about two years in operation the bunch-synchronized data acquisition as used with the accelerator control system at the European XFEL is being revisited and reevaluated. As we have now gained quite some experience with the current system design it was found to have shortfalls specifically with respect to the offered methods for data retrieval and management. In the context of modern data collection and management technologies readily in use by huge internet companies, new frameworks are being evaluated as a control-system independent replacement for data reduction, processing and online analysis. The main focus here is currently put on streaming technologies. Different approaches are being discussed in this paper and reviewed for feasibility and adaptability for control system architectures used at DESY’s accelerator facilities. | |||
![]() |
Poster WEPHA161 [2.687 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA161 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 20 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA167 | Status of the SHINE Control System | controls, network, interface, software | 1481 |
|
|||
The high-gain free electron lasers have given scientists hopes for new scientific discoveries in many frontier research areas. The Shanghai HIgh repetition rate XFEL aNd Extreme light facility (SHINE) is under construction in China, which is a quasi-continuous wave hard X-ray free electron laser facility. The control system is responsible for the facility-wide device control, data acquisition, machine protection, high level database or application, as well as network and computing platform. It will be mainly based on EPICS to reach the balance between the high performance and costs of maintenance. The latest technology will be adopted for the high repetition rate data acquisition and feedback system. The details of the control system design will be reported in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA167 | ||
About • | paper received ※ 23 September 2019 paper accepted ※ 11 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBPP05 | Implementing Odin as a Control and Data Acquisition Framework for Eiger Detectors | detector, controls, framework, EPICS | 1590 |
|
|||
The increasing data throughput of modern detectors is a growing challenge for back-end data acquisition systems. OdinData provides a scalable framework for data acquisition used by multiple beamlines at Diamond Light Source (DLS). While it can be implemented standalone, OdinControl is used to provide a convenient interface to OdinData. Eiger detectors at DLS were initially integrated into the Odin framework specifically for the data acquisition capability, but the addition of detector control provides a more coherent and easily deployable system. OdinControl provides a generic HTTP API as a single point of control for various devices and applications. Adapters can abstract the low-level control of a detector into a consistent API, making it easier for high-level applications to support different types of detector. This paper sets out the design and development of Odin as a control system agnostic interface to integrate Eiger detectors into EPICS beamline control systems at DLS, as well as the current status of operation. | |||
![]() |
Slides THBPP05 [1.724 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP05 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||