
A set of Lua classes, serve as proxies for each of the
Lua primitive types. They enclose a Lua primitive type,
and also a C++ 11 smart-pointer to the Data Access
Catalog container introspection interface. Lua
operators behaving transparently as proxies for the
enclosed Lua primitive type are provided. The Lua
index operator returns a subordinate property object.
Subordinate properties are conveniently accessed
simply as ordinary variables within Lua source code.
See below.

Los Alamos National Laboratory

Lua–Language–Based
Data Acquisition Processing

EPICS Subscription Filters
Jeffrey O. Hill AOT-IC

EPICS has been upgraded enabling client side tools to
receive subscription updates filtered selectively by
Lua–language–based data acquisition processing
subscription update filters, specified by snippets of
Lua-language-source-code embedded within the
EPICS channel-name’s postfix. We will discuss the
generalized utility of this approach across a wide
range of data acquisition applications, projects, and
platforms; the performance and robustness of our
production implementation; and our operational
experience with the software at LANSCE.

Abstract

At LANSCE site-specific flavour filters and time-slice
filters have been implemented. Example filter syntax
is provided below. Filter one selects cycles with gate
H+IP and also sans both gates H-GX and MPEG. Filter
two replaces the CA payload with elements 50
through 150 of the waveform data. Filter three
selects cycles that have beam gate H+IP, replacing the
payload with the first 150 µs of the waveform. Filter
four replaces the CA payload with -30 through -10 µs
of waveform data before the falling edge of gate
MPEG, selecting only cycles containing MPEG. Filter
five, replaces the CA payload with 100 µs after
waveform rising edge through 150 µs before
waveform falling edge selecting only cycles containing
LPEG. Filter six, selects 100 µs after gate T0 through
15 µs before waveform end for any flavour.

LANSCE Filters
Lua Filter Specification
Channel Name Postfix Examples

Lua
“Lua”, a language designed specifically to be
embeddable within other software, was created in
1993 by members of the Computer Graphics
Technology Group (Tecgraf) at the Pontifical Catholic
University of Rio de Janeiro, in Brazil. "Lua"
(pronounced LOO-ah) means "Moon" in Portuguese.
It is a dynamic typed language, allowing automated
conversion between string and numeric types, with a
mixture of C-like and Pascal-like syntax. Lua is easily
interfaced with C-language software.

Lua - benefits
Lua provides unique features suitable for its
embedding within the core of EPICS, and for
improving the overall utility of EPICS. Lua provides
efficient, compiled to byte-code virtual machine
execution, a compact footprint, a portable
implementation, and incremental garbage collection.
Lua exception handling ensures that the sequence of
nested function calls conveying execution to a failure-
source code line might be reported. Lua has been
successfully deployed into many industrial
applications, and based on this reputation it is
expected to be robust. Lua has a comprehensive set of
features, and powerful adjunct-libraries written by an
active user-community. Lua is well proven for
configuration, scripting, and rapid-prototyping, and is
a strong return-for-effort candidate functionally
upgrading weak areas in the pre-existing
implementation of EPICS. Finally, Lua has a liberal MIT
license, compatible with EPICS.

Lua - negatives
There are some negatives. In particular, with Lua the
default scope of variables is global, arrays start at one
nonetheless storing data at index zero isn’t prohibited,
and there is ambiguity between nil-valued contrasted
with non-existent table elements. Lua lacks support
for user-defined-type dedicated memory allocators
appropriate within memory-constrained systems.

myPV% [=[val >= 3.2 and val <= 3.4]=]
myPV%[val.alarm.condition.severity~=0]
myPV %[3.4<val]
myPV %[==[val%3.4]==]
myPV %[===[val==3.2]===]

Lua Factory Specification
Channel Name Postfix Examples
myPV % {={myFilterFactory ('blue')}=}
myPV%{myChannelFactory()}
myPV %{ myApplicationsFactory(10,2)}
myPV % {==={flavour('savoury')}===}

Our design configures the subscription update filters
with a snippet of Lua code specified within a CA
channel name postfix. This approach avoids revising
the source code of CA Client general-purpose
community obtained application-programs. Two basic
forms of this channel name postfix both begin with a
percent character followed by Lua source code
enclosed by square or curly brackets specifying
respectively a direct-action filter or a factory.

Filter Syntax

Filters are called, passing the subscription update
payload, in an argument named val. Filters return nil,
false, true, or a data-object for conveying supress,
supress, send, or send replacing the update payload’s
value with the returned data-object respectively.

Lua Filter Interface

Lua Factory Interface
A factory may return either type Boolean, a direct-
acting filter function, or a channel-object . Factories
return Boolean false or true for when all subscription
updates will be permanently disabled or enabled
respectively. A channel object can provide a method
named filterFactory returning type Boolean or
a channel specific direct-acting filter function.

val.alarm.condition.severity

Lua Data Access Objects

Lua Error Handling
When asynchronous requests fail within the server, a
detailed multi-line diagnostic message is conveyed to
the application’s response callback method. A
diagnostic message is essential when providing the
sequence of nested function calls leading up to the
source line of a Lua execution-failure. Detailed
diagnostics messages are also forwarded to clients
when there are Lua compilation errors.

1 XXTDAQ001D01%{flv('H+IP no H-GX MPEG')}

2 XXTDAQ001D01%{tim('(50:150)em')}

3 XXTDAQ001D01%{flv('H+IP','(0:150)us')}

4 XXTDAQ001D01%{tim('~MPEG(-30:-10)us','MPEG')}

5 XXTDAQ001D01%{flv('LBEG','(100:~(-150))us')}

6 XXTDAQ001D01%{tim('(T0(100):~(-15))us')}

Site-Specific Filters
We emphasize, that site-specific polymorphic Data
Access container interface adapters are fully
supported and easily implemented for site specific
properties. We emphasize, that site-specific Lua filters
are fully supported and easily implemented for site
specific purposes. The LANSCE specific Lua filters,
implemented as C-language source code Lua snap-
ins, along with LANSCE specific polymorphic Data
Access container interface adapters are provided as
examples on the world-wide-web.
https://git.launchpad.net/~johill-lanl/+git/lansce-
filters
https://code.launchpad.net/~johill-lanl/epics-
base/server1

https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://git.launchpad.net/~johill-lanl/+git/lansce-filters
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1
https://code.launchpad.net/~johill-lanl/epics-base/server1

