Keyword: neutron
Paper Title Other Keywords Page
MOBO04 Characterization and First Beam Loss Detection with One ESS-nBLM System Detector detector, linac, operation, proton 29
 
  • L. Segui, H. Alves, S. Aune, J. Beltramelli, Q. Bertrand, M. Combet, M. Kebbiri, Ph. Legou, O. Maillard, A. Marcel, T. Papaevangelou
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Dano-Daguze, D. Desforge, F. Gougnaud, T.J. Joannem, C. Lahonde-Hamdoun, P. Le Bourlout, Y. Mariette, J. Marroncle, V. Nadot, G. Tsiledakis
    CEA-DRF-IRFU, France
  • I. Dolenc Kittelmann, T.J. Shea
    ESS, Lund, Sweden
 
  The monitoring of losses is crucial in any accelerator. In the new high intensity hadron facilities even low energy beam can damage or activate the materials so the detection of small losses in this region is very important. A new type of neutron beam loss monitor has been developed specifically targeting this region, where only neutrons and photons can be produced and where typical BLM, based on charged particle detection, could not be appropriate because of the photon background due to the RF cavities. The BLM proposed is based on gaseous Micromegas detectors, designed to be sensitive to fast neutrons and with little sensitivity to photons. Development of the detectors presented here has been done to fulfil the requirements of ESS and they will be part of the ESS-BI systems. The detector has been presented in previous editions of the conference. Here we focus on the neutron/gamma rejection with the final FEE and in the first operation of one of the modules in a beam during the commissioning of LINAC4 (CERN) with the detection of provoked losses and their clear separation from RF gammas. The ESS-nBLM system is presented in this conference in a separate contribution.  
slides icon Slides MOBO04 [7.609 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOBO04  
About • paper received ※ 05 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP016 Particle interactions with diamond detectors detector, site, electron, photon 115
 
  • C. Weiss, M. Cerv, E. Griesmayer, P. Kavrigin
    CIVIDEC Instrumentation, Wien, Austria
 
  Chemical vapor deposition (CVD) diamond as radiation detector material has a wide range of applications, in par- ticular for harsh radiation environments and at high tem- peratures. The sensitivity of diamond is exploited in meas- urements with charged particles, neutrons and photons. Diamond detectors are used as beam loss monitors in particle accelerators, for photon detection in Synchrotron Light Sources, for neutron diagnostics in thermal neutron fields and for Deuterium-Deuterium (D-D) fusion and Deuterium-Tritium (D-T) fusion plasma neutrons. In this paper we present the simulated and measured re- sponse functions of single-crystal (sCVD) diamond detec- tors to charged particles, heavy ions, thermal neutrons, fast neutrons, X-rays and gamma radiation. All measurements were performed with CIVIDEC diamond detectors and re- lated electronics [1] at various research facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP016  
About • paper received ※ 09 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP022 Neutron Sensitive Beam Loss Monitoring System for the ESS Linac detector, linac, DTL, monitoring 131
 
  • I. Dolenc Kittelmann, F.S. Alves, E.C. Bergman, C.S. Derrez, V. Grishin, K.E. Rosengren, T.J. Shea
    ESS, Lund, Sweden
  • Q. Bertrand, T.J. Joannem, Ph. Legou, Y. Mariette, V. Nadot, T. Papaevangelou, L. Segui
    CEA-IRFU, Gif-sur-Yvette, France
  • W. Cichalewski, G.W. Jabłoński, W. Jałmużna, R. Kiełbik
    TUL-DMCS, Łódź, Poland
 
  The European Spallation Source, currently under construction in Lund, Sweden, will be a neutron source based on partly superconducting linac, accelerating protons to 2GeV with a peak current of 62.5mA, ultimately delivering a 5MW beam to a rotating tungsten target. For a successful tuning and operation of a linac, a Beam Loss Monitoring (BLM) system is required. The system is designed to protect the machine from beam-induced damage and unnecessary activation of the components. This contribution focuses on one of the BLM systems to be deployed at the ESS linac, namely the neutron sensitive BLM (nBLM). Recently, test of the nBLM data acquisition chain including the detector has been performed at LINAC4, at CERN. The test represents first evaluation of the system prototype in realistic environment. Results of the test will be presented together with an overview of the ESS nBLM system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP022  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP023 Ionisation Chamber Based Beam Loss Monitoring System for the ESS Linac detector, linac, background, monitoring 136
 
  • I. Dolenc Kittelmann, F.S. Alves, E.C. Bergman, C.S. Derrez, T.J. Grandsaert, V. Grishin, T.J. Shea
    ESS, Lund, Sweden
  • W. Cichalewski, G.W. Jabłoński, W. Jałmużna, R. Kiełbik
    TUL-DMCS, Łódź, Poland
 
  The European Spallation Source, currently under construction in Lund, Sweden, will be a neutron source based on partly superconducting linac, accelerating protons to 2GeV with a peak current of 62.5mA, ultimately delivering a 5MW beam to a rotating tungsten target. One of the most critical elements for the protection of an accelerator is its Beam Loss Monitoring (BLM) system. The system is designed to protect the machine from beam-induced damage and unnecessary activation of the components. This contribution focuses on one of the BLM systems to be deployed at the ESS linac, namely the Ionisation Chamber based BLM (ICBLM). Several test campaigns have been performed at various facilities. Results of these tests will be presented here together with an overview of the ESS ICBLM system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP023  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP007 Transverse Phase Space Scanner Developments at IPHC emittance, electron, radiation, ECR 293
 
  • F.R. Osswald, T. Adam, P.G. Graehling, M. Heine, C. Maazouzi, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  Emittance characterization of charged particle beams is a standard and important tool to assess the performances of a facility. Due to emittance growth, beam losses and space charge the measurement of the transverse phase space distributions of the charged particles is still an up-to-date issue even at low energy and for wide beams. It enables detailled characterization of particle position and incidence in addition to other diagnostics. It gives access to the particles distribution at the boarder, a region of lower density important for high power accelerators and high intensity radioactive beams as they request reduced losses and damages thus less contaminated parts and nuclear waste for a safe handling during maintenance. Transverse Phase Space Scanners are designed at IPHC and based on the Allison system. They are currently used on different injection channels of large facilities as SPIRAL 2 and FAIR and will be used in the future on the DC280/SHE facility at JINR. A review of the IPHC’s high resolution scanner design, development programme and future challenges are presented espacially for beam halo analysis and "loss less" beam transport lines.  
poster icon Poster TUPP007 [1.475 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP007  
About • paper received ※ 03 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP036 Performance of an In-Air Secondary Emission Grid Profile Monitor at the ISIS Neutron and Muon Source target, simulation, focusing, data-acquisition 407
 
  • D.W. Posthuma de Boer, C. Bovo, H.V. Cavanagh, B. Jones, A.H. Kershaw, A. Pertica
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS neutron and muon source, located in the UK, consists of an H linear accelerator, a rapid cycling proton synchrotron and extraction lines to two target stations. A project is currently under way to replace the target assembly of the First Target Station (TS1) in order to secure its continued operation and improve operational flexibility. In addition to a number of other diagnostic tools, a new secondary emission (SEM) grid profile monitor is expected to be located within the helium atmosphere of the new target assembly. To investigate the performance of an out-of-vacuum SEM grid, a prototype monitor was positioned in-air between a beam exit window and a dump. Profile measurements taken with this monitor are presented, including tests at a range of bias voltages with a fast data acquisition system to investigate secondary signal sources.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP036  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)