Author: Velez, A.    [Veléz, A.]
Paper Title Page
MOPTEV013 The VSR Demo Module Design – A Spaceframe-Based Module for Cavities with Warm Waveguide HOM Absorbers 233
 
  • F. Glöckner, D. Böhlick, M. Bürger, V. Dürr, A. Frahm, J. Knobloch, F. Pflocksch, A. Veléz, D. Wolk, N. Wunderer
    HZB, Berlin, Germany
 
  The VSR (Variable pulse length Storage Ring) demo module is a prototype for the superconducting upgrade of HZB’s Bessy II. The module houses two 1.5 GHz superconducting cavities operated at 1.8 K in continuous wave (CW) mode. Each cavity has five water cooled Waveguide HOM Absorbers with high thermal load (450 W), which requires them to be water cooled. This setup introduces several design challenges, concerning space restriction, the interconnection of warm and cold parts and the alignment. In order to provide support and steady alignment an innovative space frame was designed. The transition from cold to warm over the partially superconducting waveguides made a more complex design for shielding and cooling system necessary. With the design close to completion, we are now entering the purchase phase.  
poster icon Poster MOPTEV013 [3.239 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV013  
About • Received ※ 21 June 2021 — Revised ※ 02 September 2021 — Accepted ※ 18 November 2021 — Issue date ※ 02 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTEV008 VSR Demo Cold String: Recent Developments and Manufacturing Status 647
 
  • N. Wunderer, V. Dürr, A. Frahm, H.-W. Glock, F. Glöckner, J. Knobloch, E. Sharples-Milne, A.V. Tsakanian, A. Veléz
    HZB, Berlin, Germany
  • M. Bonezzi, A. D’Ambros, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • J. Guo, J. Henry, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A. Veléz
    Technical University Dortmund, Dortmund, Germany
 
  The BESSY VSR project aims to demonstrate the possibility to simultaneously run both long (15ps) and short bunches (1.7ps) within BESSY II storage ring. To achieve this, a new SRF cavity system with higher harmonic cavities (3 and 3.5 harm.) needs to be installed. The combined cavity SRF beating allows for stable bunch shortening for half of the buckets while standard lengths remaining for the other half. These SRF cavities will be equipped with waveguide-connected HOM absorbers and will be controlled with a blade tuner plus piezos. To demonstrate the feasibility of this complex system the VSR DEMO cold string consists of two 1.5 GHz cavities, each featuring five waveguides and a higher power coupler, plus all interconnecting elements coupled to the beam vacuum. For most of these components the fundamental development work is completed and has been reported in the past. This paper summarizes recent enhancements, component detailing and manufacturing status. The key cold string components such as cavities, higher power couplers and blade tuners have already entered the manufacturing phase. All other cold string components will be ready for purchase at the latest beginning of 2022.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV008  
About • Received ※ 18 June 2021 — Revised ※ 09 August 2021 — Accepted ※ 22 November 2021 — Issue date ※ 05 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTEV009 The 1.5 GHz Coupler for VSR DEMO: Final Design Studies, Fabrication Status and Initial Testing Plans 652
 
  • E. Sharples-Milne, V. Dürr, J. Knobloch, S. Schendler, A. Veléz, N. Wunderer
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A. Veléz
    Technical University Dortmund, Dortmund, Germany
 
  The variable pulse length storage ring demo (VSR DEMO) is a research and development project at the Helmholtz Zentrum Berlin (HZB) to develop and validate a 1.5 GHz SRF system capable of accelerating high CW currents (up to 300 mA) at high accelerating fields (20 MV/m) for application in electron storage rings. Such a system can be employed to tailor the bunch length in synchrotron light source such as BESSY II. VSR DEMO requires a module equipped with two 1.5 GHz 4-cell SRF cavities and all ancillary components required for accelerator operations. This includes one 1.5 GHz fundamental power coupler (FPC) per cavity, designed to handle 16 kW peak and 1.5 kW average power. The final design studies, fabrication status and initial testing plans for these FPCs will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV009  
About • Received ※ 21 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 09 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOTEV07 Industrial X-Ray Tomographie as a Tool for Shape and Integrity Control of SRF Cavities 725
 
  • H.-W. Glock, J. Knobloch, A. Neumann, A. Veléz
    HZB, Berlin, Germany
 
  Industrial X-ray tomography offers the possibility to capture the entire inner and outer shape of an SRF cavity, providing also insights in weld quality and material defects. As a non-contact method this is especially attractive to investigate shape properties of fully processed and closed cavities. A drawback is the inherently strong X-ray damping of niobium, which causes the demand for intense hard X-rays, typically beyond the capabilities of dc-X-ray-tubes. This also limits the accuracy of material borders found by the tomographic inversion. To illustrate both capabilities and limitations, results of X-ray tomography investigations using three different cavities are reported, also describing the fundamental parameters and the hard- and software demands of the technology. We also discuss the non-trivial transferring of tomography data into RF simulation tools.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides THOTEV07 [9.705 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THOTEV07  
About • Received ※ 30 June 2021 — Revised ※ 03 January 2022 — Accepted ※ 03 March 2022 — Issue date ※ 08 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)