Author: Umemori, K.
Paper Title Page
SUPCAV008 Design and Construction of Nb3Sn Vapor Diffusion Coating System at KEK 23
 
  • K. Takahashi, T. Okada
    Sokendai, Ibaraki, Japan
  • H. Ito, E. Kako, T. Konomi, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  Vapor diffusion Nb3Sn coating system was developed at KEK. At most 1.3GHz 3-cell cavity can be coat with the coating system. The coating system consists of a coating chamber made of Nb, a vacuum furnace for heating the Nb chamber, and a heating device of Tin in the crucible. The Nb chamber vacuum and the furnace vacuum are isolated to prevent contamination from the furnace. There is a heating device for increasing Tin vapor pressure. In this presentation, the design and construction of the coating system are reported.  
poster icon Poster SUPCAV008 [0.986 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV008  
About • Received ※ 21 June 2021 — Accepted ※ 18 November 2021 — Issue date ※ 11 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPCAV009 First Nb3Sn Coating and Cavity Performance Result at KEK 27
 
  • K. Takahashi, T. Okada
    Sokendai, Ibaraki, Japan
  • H. Ito, E. Kako, T. Konomi, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  At KEK, Nb3Sn vapor diffusion R&D for High-Q has just started. We have performed Nb3Sn coating on niobium samples and characterized these samples. We optimized the cavity coating parameter from the result of characterized samples. After optimizing the parameter, we have performed Nb3Sn coating on a TESLA-like single-cell Nb cavity and measured cavity performance in vertical tests. This presentation presents the result of the cavity coating and performance results.  
poster icon Poster SUPCAV009 [1.481 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV009  
About • Received ※ 21 June 2021 — Accepted ※ 18 March 2022 — Issue date ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOFAV01 Successful Beam Commissioning of Heavy-Ion Superconducting Linac at RIKEN 167
 
  • K. Yamada, T. Dantsuka, M. Fujimaki, E. Ikezawa, H. Imao, O. Kamigaito, M. Komiyama, K. Kumagai, T. Nagatomo, T. Nishi, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  A new superconducting booster linac, so-called SRILAC, has been constructed at the RIKEN Nishina Center to upgrade the acceleration voltage of the existing linac in order to enable further investigation of new super-heavy elements and the production of useful RIs. The SRILAC consists of 10 TEM quarter-wavelength resonators made from pure niobium sheets which operate at 4.5 K. We succeeded to develop high performance SC-cavities which satisfies the required Q0 of 1E+9 with a wide margin. Installation of the cryomodule and He refrigerator system was completed by the end of FY2018, and the first cooling test was performed in September 2019. After various tests of the RF system, the beam acceleration was successfully commissioned in January 2020. In June 2020, the beam supply to the experiment was started. In this talk, I will report on the beam commissioning of SRILAC as well as the status of the frequency tuner and the differential pump system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV01  
About • Received ※ 26 July 2021 — Revised ※ 30 August 2021 — Accepted ※ 05 March 2022 — Issue date ※ 16 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPCAV006 High-Q/High-G R&D at KEK Using 9-Cell TESLA-Shaped Niobium Cavities 268
 
  • R. Katayama, A. Araki, H. Ito, E. Kako, T. Konomi, S. Michizono, M. Omet, K. Umemori
    KEK, Ibaraki, Japan
 
  We will report on the current progress of High-Q/High-G R&D using three 1.3 GHz 9-cell TESLA shape niobium superconducting cavities at the High Energy Accelerator Research Organization (KEK). These cavities are made of bulk niobium of fine grain material with RRR >300 and have been annealed at 900 degrees for 3 hours. The cavity performances were evaluated at the Superconducting RF Test Facility at KEK (KEK-STF) after 2-step bake (70-75°C 4 h + 120°C 48 h), electropolishing at low temperature, and fast cooling procedure were applied to these cavities. In this study, obtained results will be compared with the baseline measurement for the standard recipe at KEK.  
poster icon Poster MOPCAV006 [1.880 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPCAV006  
About • Received ※ 22 June 2021 — Revised ※ 14 January 2022 — Accepted ※ 22 February 2022 — Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPCAV012 Fabrication of 1.3 GHz SRF Cavities Using Medium Grain Niobium Discs Directly Sliced from Forged Ingot 287
 
  • T. Dohmae, K. Abe, H. Inoue, A. Kumar, S. Michizono, T. Saeki, K. Umemori, Y. Watanabe, A. Yamamoto, M. Yamanaka, K. Yoshida
    KEK, Ibaraki, Japan
  • A. Fajardo, N. Lannoy
    ATI, Albany, Oregon, USA
  • G.R. Myneni
    JLab, Newport News, USA
 
  Medium grain (MG) niobium disc which is directly sliced from forged ingot is newly investigated for the cavity material. An effective cost reduction can be achieved using MG niobium since rolling process which is necessary for typical niobium sheet can be skipped during MG niobium production. Grain size of MD niobium is 200-300 um which is much smaller than large grain (LG) niobium directly sliced from melted niobium ingot. Hence, the formability of MG niobium is expected to be much better than LG niobium. KEK has started fabrication of cavity using MG niobium. In this talk, characteristic of MG niobium during fabrication will be reported.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPCAV012  
About • Received ※ 20 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 17 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPCAV015 Development of QWRS for the Future Upgrade of JAEA Tandem Superconducting Booster 299
 
  • Y. Kondo, H. Kabumoto, M. Matsuda
    JAEA, Ibaraki-ken, Japan
  • T. Dohmae, E. Kako, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
  • H. Harada, J. Kamiya, K. Moriya, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The Japan Atomic Energy Agency (JAEA) tandem booster is one of the pioneering superconducting heavy ion linac in the world. It consists of 40 QWRs with an operation frequency of 130 MHz and βopt=0.1, and has potential to accelerate various ions up to Au to 10 MeV/u. The user operation was started in 1994, however, it has been suspended since the Great East Japan Earthquake in 2011. Recently, we started activities to investigate and improve the performance of the QWR cavities towards the restart of the tandem booster. In addition, design work of new lower beta cavities to improve the acceleration efficiency of heavier ions such as Uranium has been launched. Now we are surveying some operation frequencies and types of cavities including multi-gap QWR with use of electro-magnetic simulation of the cavities. In this work, the current status of the R&D program for the JAEA tandem facility is presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPCAV015  
About • Received ※ 20 June 2021 — Accepted ※ 21 August 2021 — Issue date ※ 01 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOFDV02
Observation of Precise Distribution of Trapped Magnetic Flux Due to Quench by M&T Mapping System  
 
  • T. Okada
    Sokendai, Ibaraki, Japan
  • E. Kako, M. Masuzawa, H. Sakai, R. Ueki, K. Umemori
    KEK, Ibaraki, Japan
  • P. Pizzol, A. Poudel, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  This study focused on the flux trapping of the superconducting cavity by measuring changes in the spatial magnetic field distribution for the Nb single-cell cavity using the magnetic field and temperature mapping system. The different external magnetic fields were applied when the cavity was vertically tested. The differences of magnetic field distribution were compared before and after flux trapping caused by quenches. The magnetic field mapping measured the magnetic field, including 3 axial directions, outside the equator of the cavity. Moreover, the local heating generated by the magnetic flux trapping was observed locally using temperature mapping. The result shows that the changes in the magnetic field distribution have the magnetic field components towards the quench location. In this presentation, the detail of experiments and results of the change of the magnetic field distribution and the local heating will be presented.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPFAV003 Stable Beam Operation at 33 MV/m in STF-2 Cryomodules at KEK 382
 
  • Y. Yamamoto, M. Akemoto, D.A. Arakawa, A. Araki, S. Araki, A. Aryshev, T. Dohmae, M. Egi, M.K. Fukuda, K. Hara, H. Hayano, Y. Honda, T. Honma, H. Ito, E. Kako, H. Katagiri, R. Katayama, M. Kawamura, N. Kimura, Y. Kojima, Y. Kondou, T. Konomi, M. Masuzawa, T. Matsumoto, S. Michizono, Y. Morikawa, H. Nakai, H. Nakajima, K. Nakanishi, M. Omet, T. Oyama, T. Saeki, H. Sakai, H. Shimizu, S.I. Takahara, R. Ueki, K. Umemori, A. Yamamoto
    KEK, Ibaraki, Japan
  • S. Aramoto
    Hiroshima University, Higashi-Hiroshima, Japan
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Z.J. Liptak
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Sakaue
    The University of Tokyo, The School of Engineering, Tokyo, Japan
  • A. Yamamoto
    CERN, Meyrin, Switzerland
 
  In STF at KEK, as the operational demonstration of the SRF accelerator for ILC, the STF-2 cryomodules (CM1+CM2a: one and half size CM with 12 cavities) have achieved 33 MV/m as average accelerating gradient with 7 cavities in Mar/2019. After that, one cavity with the lowest performance installed in CM2a was replaced with one N-infused cavity developed for High-Q/High-G R&D between Japan and US. From this April, the beam operation started again and those CMs achieved 33 MV/m as average accelerating gradient with 9 cavities including one N-infused cavity again. This is the very important milestone for ILC. In this report, the detailed results will be presented.  
poster icon Poster TUPFAV003 [3.020 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPFAV003  
About • Received ※ 21 June 2021 — Revised ※ 11 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 01 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPCAV011 Present Status of the Spoke Cavity Prototyping for the JAEA-ADS Linac 612
 
  • J. Tamura, Y. Kondo, F. Maekawa, S.I. Meigo, B. Yee-Rendón
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Dohmae, E. Kako, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The Japan Atomic Energy Agency (JAEA) is proposing an accelerator-driven subcritical system (ADS) for efficient reduction of high-level radioactive waste generated in nuclear power plants. One of the challenging R¥&Ds for ADS is the reliability of the accelerator. In preparation for the full-scale design of the proton linac for the JAEA-ADS, we are now prototyping a single-spoke cavity for low-beta (around 0.2) beam acceleration. As there is no experience of manufacturing a superconducting spoke cavity in Japan, the cavity prototyping and performance testing are essential to ensure the feasibility of the JAEA-ADS linac. To proceed to an actual cavity fabrication, we have carefully reviewed the fabrication process. And then, we examined the electron-beam welding using niobium test pieces and investigated the welding condition for realizing the smooth underbead. We have finally started the press forming of niobium sheets and the machine work to shape the cavity parts. Now, we are parparing for the electron-beam welding of the shaped niobium parts.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPCAV011  
About • Received ※ 02 July 2021 — Revised ※ 30 August 2021 — Accepted ※ 22 November 2021 — Issue date ※ 28 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTEV013 New Frequency-Tuning System and Digital LLRF for Stable and Reliable Operation of SRILAC 666
 
  • K. Suda, O. Kamigaito, K. Ozeki, N. Sakamoto, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The superconducting booster linac at RIKEN (SRILAC) has ten 73-MHz quarter-wavelength resonators (QWRs) that are contained in three cryomodules. The beam commissioning of SRILAC was successfully performed in January 2020. Frequency tuning during cold operation is performed by compressing the beam port of the cavity with stainless wires and decreasing the length of each beam gap, similar to the method adopted at ANL and FRIB. However, each tuner is driven by a motor connected to gears, instead of using gas pressure. Since the intervals of the QWRs are small due to the beam dynamics, a compact design for the tuner was adopted. Each cavity was tuned to the design frequency, which required frequency changes of 3 kHz to 7 kHz depending on the cavity. Although no piezoelectric actuator is mounted on the tuning system, phase noise caused by microphonics can be sufficiently reduced by a phase-locked loop using a newly developed digital LLRF. The details of the tuning system as well as the digital LLRF will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV013  
About • Received ※ 13 August 2021 — Revised ※ 13 September 2021 — Accepted ※ 11 November 2021 — Issue date ※ 22 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCAV01
High-Performance Large-Grain Cavities for the ILC  
 
  • K. Umemori
    KEK, Ibaraki, Japan
 
  Large-grain SRF cavities might offer performance and cost benefits for the ILC and other future accelerators. On the other hand, ununiformity of grains might sometimes give difficulties on fabrication. Varication of mechanical strength is also another issues related to high pressure gas safety. This contribution will present an overview of recent worldwide activities related to large grain cavities. Materials, fabrications and cavity performances will be discussed.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOTEV02 Stable Beam Operation in Compact ERL for Medical and Industrial Application at KEK 714
 
  • H. Sakai, M. Adachi, D.A. Arakawa, S. Eguchi, M.K. Fukuda, K. Haga, M. Hagiwara, K. Hara, K. Harada, N. Higashi, T. Honda, Y. Honda, T. Honma, M. Hosumi, E. Kako, Y. Kamiya, R. Kato, H. Kawata, Y. Kobayashi, Y. Kojima, T. Konomi, H. Matsumura, S. Michizono, C. Mitsuda, T. Miura, T. Miura, T. Miyajima, Y. Morikawa, S. Nagahashi, H. Nakai, N. Nakamura, K. Nakanishi, K.N. Nigorikawa, T. Nogami, T. Obina, F. Qiu, H. Sagehashi, M. Shimada, H. Shimizu, T. Shioya, M. Tadano, T. Takahashi, R. Takai, H. Takaki, O.A. Tanaka, Y. Tanimoto, A. Toyoda, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto
    KEK, Ibaraki, Japan
  • R. Hajima, K. Kawase
    QST, Tokai, Japan
  • N.P. Norvell
    SLAC, Menlo Park, California, USA
  • F. Sakamoto
    Akita National College of Technology, Akita, Japan
  • M. Shimada
    HSRC, Higashi-Hiroshima, Japan
 
  Funding: Supported by Accelerator Inc. and a New Energy and Industrial Technology Development Organization (NEDO) project and JSPS Grant-in-Aid for Scientific Research (KAKENHI) Grant Number JP18H03473.
A superconducting Compact Energy Recovery Linac (cERL) for electrons was constructed in 2013 at KEK to demonstrate energy recovery concept with low emittance, high-current CW beams of more than 10 mA for future multi-GeV ERL. Recently this cERL was operated not only to demonstrate energy recovery linac high current beam operation but also to promote and conduct a variety of industrial applications such as FEL, THz operation and Rare Isotope Production and irradiation for some materials. In this talk, I will present the status of the studies to realize the stable high-current low emittance CW beam and some applications with this beam.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THOTEV02  
About • Received ※ 19 June 2021 — Revised ※ 13 March 2022 — Accepted ※ 13 May 2022 — Issue date ※ 15 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPCAV006 Recent Activities Regarding 9-Cell TESLA-Type Cavities at KEK 792
 
  • M. Omet, R. Katayama, K. Umemori
    KEK, Ibaraki, Japan
 
  In this contribution we report on two topics regarding recent activities on 9-cell TESLA-type cavities at the High Energy Accelerator Research Organization (KEK). First, we give an overview of the inner surface treatments and vertical test (VT) results of four fine grain 9-cell TESLA-type cavities over the last one and a half years. Secondly, we report on the upgrade of the VT DAQ system at the Superconducting RF Test Facility (STF) at KEK. In this upgrade, most components of the VT system were integrated in an EPICS control system. Based on Control System Studio (CSS) and Python a new user interface was created, improving the workflow during and after VTs at STF.  
poster icon Poster THPCAV006 [1.752 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPCAV006  
About • Received ※ 18 June 2021 — Revised ※ 26 August 2021 — Accepted ※ 23 November 2021 — Issue date ※ 04 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROFDV01 Systematic Investigation of Mid-T Furnace Baking for High-Q Performance 881
 
  • H. Ito, A. Araki, K. Umemori
    KEK, Ibaraki, Japan
  • K. Takahashi
    Sokendai, Ibaraki, Japan
 
  We report on an investigation of the effect of a new baking process called "furnace baking" on the quality factor. Furnace baking is performed as the final step of the cavity surface treatment; the cavities are heated in a vacuum furnace in a temperature range of 200-800C for 3 h, followed by high-pressure rinsing and radio-frequency measurement. We find the anti-Q-slope for cavities furnace-baked at a temperature range of 250 to 400C and a reduction in the residual resistance for all cavities. In particular, an extremely high Q value of 5·1010 at 16 MV/m and 2.0 K is obtained for cavities furnace-baked at 300C.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-FROFDV01  
About • Received ※ 21 June 2021 — Accepted ※ 24 February 2022 — Issue date ※ 30 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)