

Stable Beam Operation at 33 MV/m in STF-2 Cryomodules at KEK

<u>Y. Yamamoto</u>, on behalf of STF Group (KEK, Tsukuba, Japan)

Abstract

In STF at KEK, as the operational demonstration of the SRF accelerator for ILC, the STF-2 cryomodules (CM1+CM2a: one and half size CM with 12 cavities) have achieved 33 MV/m as average accelerating gradient with 7 cavities in Mar/2019. After that, one cavity with the lowest performance installed in CM2a was replaced with one N-infused cavity developed for High-Q/High-G R&D be-tween Japan and US. From Apr/2021, the beam operation started again and those CMs achieved 33 MV/m as aver-age accelerating gradient with 9 cavities including one N-infused cavity again. This is a very important milestone for the ILC project. In this report, the detailed results will be presented.

Cost reduction is essential for the ILC project. High-Q/High-G R&D started since 2017 between Japan and US. CAV#9 experienced n-infusion in KEK, and was installed in CM2a.

Cavity Replacement Work from 2019 to 2020

Aug/2019	Disassembly of CM2a			
Nov/2019	Pulling CM2a out of tunnel			
Jan/2020	Installing cavity string in clean room			
Heb/2020	Replacing CAV#9 with n-infused cavity			
Mar/2020	Installing CM2a in beamline			
Work was stopped due to COVID-19				
Jun2020	Completion inspection by local government			
Sep/2020	5 th cooldown test			

Performance of Cavity and Cryomodule

Pressure 2K: 3.01 kPa Pressure 4K: 125.30 kPa	Capture Inner conductor 4.12E-8 Pa CM1 Upstream 1.41E-7 Pa Input Volt 2.17V Feedback	Parameters	Mar/2019	Apr/2021
Level 44: 51.21* Level 2K: 54.35* Level CM2a End: 22.90*	CMI Input coupler 5.44E-6 Pa CMI Inner conductor 2.28E-8 Pa CM2a Downstream 2.24E-7 Pa CM2a Input coupler 5.44E-6 Pa	Number of cavities incl. CCM used for operation	7 + 2	12 + 2
4K Pot: 4.65 K 2K Pot: 1.69 K 80K anchor#1: 132.950 K 80K anchor#2: 144.150 K	CM2 a limiter conductor 4.952-67a CM1/CM2a Vessel 1.01E-3Pa Cav5 cav6 Cav7 cav7 CM1/CM2a Vessel 1.01E-3Pa Cav10 cav11 Cav10 cav11 Cav11	Beam energy	280 MeV	384 MeV
	32.9 IVI V/III	Beam intensity	0.28 μA	1.8 µA
Variable-hybrid		Beam power	78 W	677 W
Phase Shifter • • • •	IFD compensated by nie	Total charge per pulse	56 nC	360 nC
Phase shifter CH busy monitor set step cor or cor or cor enable cor or cor enable cor or cor or cor enable cor or cor c	The state of the s	E _{acc} from beam energy	33.1 MV/m (7 cavities)	32.9 MV/m (9 cavities)
Control display 1:cws ps -1:cws ps -1:cws ps -1:css ps <		E _{acc} from RF power (P _{tra})	33.8 MV/m (7 cavities)	33.0 MV/m (9 cavities)

Conclusion

The cavity replacement work for CAV#9 in CM2a was successfully done. In the 5th cooldown test of the STF-2 cryomodules, it was confirmed that there was no problem in driving all tuner systems. In the 6th cooldown test, beam acceleration test with 14 cavities including CCM was carried out, and it was confirmed that the average accelerating gradient obtained from the beam energy reached 32.9 MV/m, and the maximum beam energy reached 384 MeV. This is a very important milestone for the ILC project. The next goal is the beam operation with long bunch train as ILC. In this beam operation, the beam power will increase by 5 times.