Keyword: storage-ring
Paper Title Other Keywords Page
MOP035 Cryogenic Infrastructure at BESSY II – Current Installations and Future Developments cryogenics, cavity, gun, radiation 131
 
  • S. Heling, W. Anders, J. Heinrich, A. Hellwig, K. Janke, S. Rotterdam
    HZB, Berlin, Germany
 
  In Berlin-Adlershof the Helmholtz-Zentrum Berlin (HZB) is operating the synchrotron radiation source BESSY II. Two superconducting wave-length shifter magnets are built-in the storage ring of BESSY II which are cooled with liquid helium. Additionally several test facilities for superconducting cavities are operated at HZB needing helium at 1.8 K. The required helium is supplied by two helium liquefiers. Parallel to operation of the existing facilities the BERLinPro project will qualify as test facility for ERL science and technology. In order to guarantee the required supply with helium at different temperature levels one of the existing helium liquefiers has been relocated to the new accelerator building and the existing cryogenic infrastructure has been upgraded with a new 10 000 L dewar, three valve boxes, a cold compressor box, warm pumps and a 80 K helium system. This paper specifies the setup of the above described helium cryoplants in detail and gives insight into the challenges of development. The paper concludes with an outlook of the upcoming developments of the cryogenic infrastructure at HZB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP035  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP063 Beam Loading in the BESSY VSR SRF Cavities cavity, beam-loading, SRF, operation 217
 
  • A.V. Tsakanian, H.-W. Glock, J. Knobloch, A.V. Vélez
    HZB, Berlin, Germany
 
  The BESSY VSR upgrade of the BESSY II light source represents a novel approach to simultaneously store long (ca. 15 ps) and short (ca. 1.7 ps) bunches in the storage ring at currents up to 300 mA. This challenging goal requires installation of four new 4-cell SRF cavities (2x1.5 GHz and 2x1.75 GHz) in one module for installation in a single straight. As far as we are aware of, this is the first installation of multi-cell L-Band cavities in a high-current storage ring. These cavities are equipped with newly developed waveguide HOM dampers necessary for stable operation. Up to 2 kW of HOM power must be absorbed. Operating two SRF cavities for each frequency will also enable transparent parking of the cavities for the beam. Based on wakefield theory, a technique for beam loading calculation will be presented. The expected beam loading both at 2 K and at room temperature has been analyzed to evaluate transparent parking for both situations. The presented study is performed for various BESSY II and VSR bunch filling patterns with 300 mA beam current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP063  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP025 Overview of Superconducting RF Cavity Reliability at Diamond Light Source cavity, vacuum, operation, GUI 885
 
  • C. Christou, P. Gu, P.J. Marten, S.A. Pande, A.F. Rankin, D. Spink, L.T. Stant, A. Tropp
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source has been providing beam for users since January 2007. The electron beam in the storage ring is normally driven by two superconducting CESR-B cavities, with two similar cavities available as spares. Day-to-day reliability of the cavities, measured by storage ring MTBF, has improved enormously over the years. A full analysis of how this improvement has been achieved is given, with particular attention paid to cavity voltage and vacuum pressure management, and the scheduling and procedure of cavity conditioning. The benefits and risks of full and partial warm-ups of the cavities are discussed, and details and impacts of cavity failure and repair are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP025  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)