Author: Plötz, H.
Paper Title Page
MOP105 A Superconducting Magnetic Shield for the Photoelectron Injector of BERLinPro 335
 
  • J. Völker, A. Frahm, A. Jankowiak, S. Keckert, J. Knobloch, G. Kourkafas, O. Kugeler, A. Neumann, H. Plötz
    HZB, Berlin, Germany
 
  Magnetic fields are a big issue for SRF cavities, especially in areas with strong electromagnets or ferromagnetic materials. Magnetic shieldings consisting of metal alloys with high magnetic permeability are often used to reroute the external magnetic flux from the cavity region. Those Mu metal shields are typically designed for weak magnetic fields like Earth’s magnetic field. Next to strong magnetic field sources like superconducting (SC) solenoids, those shields can be easily saturated resulting in a degradation of the shielding efficiency and a permanent magnetization. For the photoinjector of BERLinPro a new SC solenoid will be installed inside the cryomodule next to the SRF gun cavity. Calculations show that the fringe fields of the solenoid during operation can saturate the cavity Mu-metal shields. Therefore we designed an SC magnetic shield placed between solenoid and cavity shield to protect the latter during magnet operation. In this paper we will present the design and first measurements of this SC magnetic shield.  
poster icon Poster MOP105 [2.011 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP105  
About • paper received ※ 04 July 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP100 Thermal Load Studies on the Photocathode Insert with Exchangeable Plug for the BERLinPro SRF-Photoinjector 705
SUSP039   use link to see paper's listing under its alternate paper code  
 
  • J. Kühn, N. Al-Saokal, M. Bürger, M. Dirsat, A. Frahm, A. Jankowiak, T. Kamps, G. Klemz, S. Mistry, A. Neumann, H. Plötz
    HZB, Berlin, Germany
 
  For the operation of an SRF photoinjector a well-functioning and efficient cooling system of the photocathode is necessary. A test experiment was set up of the photocathode cooling system based on the original components, which we call thermal contact experiment (TCX). We present the results of our thermal load studies on the photocathode insert with exchangeable photocathode plug. The goal was to test all components before they are installed in the cold string of the BERLinPro SRF-Photoinjector to ensure the operation of very sensitive semiconductor photocathodes. The tests include the investigation of the cooling performance, the thermal load management and the mechanical stability of the photocathode insert.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP100  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)