Author: Mitchell, J.A.
Paper Title Page
TUP081 Status of the HL-LHC Crab Cavity Tuner 646
 
  • K. Artoos, L. Arnaudon, R. Calaga, E. Cano-Pleite, O. Capatina, T. Capelli, D.F. Cartaxo dos Santos, M. Garlasché, D.C. Glenat, A. Krawczyk, R. Leuxe, P. Minginette, J.S. Swieszek
    CERN, Geneva, Switzerland
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Research supported by the HL-LHC project
The resonance frequency of the HL-LHC Double Quarter Wave (DQW) and Radio Frequency Dipole (RFD) crab cavities is set to the operating frequency of 400.79 MHz by deforming the cavities. For both types of cavities, the tuning principle foresees a symmetric mechanical deformation of parts of the cavities in vertical direction, with the tuner motor placed outside on top of the vacuum vessel. The tuner design was successfully tested on the DQW prototype cryomodule with two cavities in 2018 in the SPS at CERN. This paper describes the design of DQW and RFD crab tuners. The experience and results of assembly and cold testing is given together with some required improvements. Finally, the final series crab tuners preparation is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP081  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP035 Design of LHC Crab Cavities Based on DQW Cryomodule Test Experience 925
 
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
  • R. Calaga, E. Cano-Pleite, R. Leuxe
    CERN, Geneva, Switzerland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Work supported by US DOE through Brookhaven Science Associates LLC under contract No. DE-SC0012704, contract No. DE-FOA-0001848 and by the European Union HL-LHC Project.
A cryomodule with two Double-Quarter Wave (DQW) cavities was designed, built and tested with the SPS beam in 2018. Each cavity was equipped with an rf pickup antenna to monitor field amplitude and phase. The pickup antenna also included a section expressly designed to couple and extract one of the Higher-Order Modes (HOM) at 1.754 GHz. The SPS beam tests evidenced direct coupling of the beam to this pickup antenna, in a similar way that a beam position monitor pickup couples to the passing beam. This undesired coupling had an impact on the RF feedback system responsible to regulate the cavity field and frequency. The present paper proposes a new DQW cavity design with improved antennae which provides adequate fundamental mode extraction while providing a reduction of both direct coupling to the beam and heat dissipation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP035  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP036 An Insight on the Thermal and Mechanical Numerical Evaluations for the High-Luminosity LHC Crab Cavities 929
 
  • E. Cano-Pleite, A. Amorim Carvalho, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, M. Garlasché, R. Leuxe, E. Montesinos
    CERN, Meyrin, Switzerland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Research supported by the HL-LHC project
One of the key devices of the HL-LHC project are SRF crab cavities. A cryomodule with two Double Quarter Wave (DQW) crab cavities has been successfully fabricat-ed and tested with beam at CERN whereas the Radio Frequency Dipole (RFD) crab cavities are currently on its fabrication process. The paper provides an insight on the multiple calculations carried out to evaluate the thermal and mechanical performance of the DQW and RFD cavi-ties and its components. In some cases, the presence of RF fields inside the cavity volume requires the use of mul-tiphysics numerical models capable of coupling these fields with the thermal and mechanical domains. In fact, the RF field presents a strong dependency on the cavity shape, whereas the mechanical, thermal and electrical properties of the materials may substantially vary as a function of temperature, which in turn depends on the RF field. The results presented in this paper, using both cou-pled and uncoupled models, allowed elucidating the importance of physics coupling on the numerical evalua-tion of RF cavities and its components. Analyses were also of great support for the design evaluation and im-provement of future prototypes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP036  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)