Paper | Title | Page |
---|---|---|
MOP047 | Progress of IFMIF/EVEDA Project and Prospects for A-FNS | 159 |
|
||
International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source, in which two 40 MeV Deuteron(D) beams with a total current 250 mA impact on a liquid Li stream flowing at 15 m/s. In the IFMIF/EVEDA project under the Broader Approach (BA) agreement, the Li target was continuously operated with the cold trap and satisfied the stability requirement throughout the continuous operation. The Linear IFMIF Prototype Accelerator (LIPAc) is currently under development in Rokkasho, Japan, to demonstrate the 9 MeV/125 mA D+ beam acceleration. Recently, the first proton beam was injected into the RFQ with more than 90 % of transmission, followed by the first D+ beam accelerated at 5 MeV. The SRF linac necessary for the 9-MeV D+ beam is nearing completion of the manufacturing phase and will be assembled in Rokkasho. Based on these results, a conceptual design of the Advanced Fusion Neutron Source (A-FNS) for its construction in Rokkasho is underway to obtain material irradiation data for a DEMO reactor. The A-FNS is designed to be composed of an accelerator facility with a 40 MeV/125 mA D+ beam, a test facility including a liquid Li target system and a post irradiation examination facility, and to enable multipurpose utilization for neutron application. | ||
![]() |
Poster MOP047 [2.327 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP047 | |
About • | paper received ※ 29 June 2019 paper accepted ※ 12 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP104 | Improvement of a Clean Assembly Work for Superconducting RF Cryomodule and Its Application to the KEK-STF Cryomodule | 721 |
|
||
We usually encountered the degradation of the superconducting RF cavities on the cryomodule test even though the performance of these cavities was good on the vertical test. In reality, the degradation of Q-values of two cavities of cERL main-linac were observed after cryomodule assembly in KEK [1] and STF cryomodule also met the degradation after the cryomodule assembly [2]. Some dusts and invisible particles might enter the cavity and generate field emission during the assembly work. Field emission is the most important cause of this degradation. In this paper, first we introduce some trials for the improved clean assembly work to SRF cavity by re-examining our clean assembly work and vacuum work. For example, slow pumping system with vacuum particle monitor was developed to know and control the particle movement during slow pumping and venting. Next we show the application of this improved work to the STF re-assemble cryomodule work in KEK.
[1} H. Sakai et al., SRF’13, Paris, France, p.855, 2013. [2] Y. Yamamoto et al., IPAC’16, Busan, Korea, p.2158, 2016. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP104 | |
About • | paper received ※ 20 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP105 | Preparation of the Cryomodule Assembly for the Linear IFMIF Prototype Accelerator (LIPAc) in Rokkasho | 726 |
|
||
The staged installation and commissioning of LIPAc is ongoing at Rokkasho Fusion Institute of QST, Japan for validating the low energy section of the IFMIF deuteron accelerator up to 9 MeV. The LIPAc Superconducting Radio Frequency accelerator (SRF) cryomodule is assembled under the responsibility of the EU Home Team, and the assembly work recently started at Rokkasho in March 2019. To fulfil the cleanliness requirements for the assembly process, QST took the responsibility to prepare the infrastructure of a cleanroom and associated devices. In this present paper, the details of the preparation work for the cryomodule assembly made by QST will be presented. | ||
![]() |
Poster TUP105 [2.116 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP105 | |
About • | paper received ※ 17 June 2019 paper accepted ※ 01 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |