Paper | Title | Page |
---|---|---|
THP102 | Uncertainty Quantification of a Quadrupole-Resonator for Radio Frequency Characterization of Superconductors | 1168 |
|
||
Funding: This work has been supported by the German Federal Ministry for Research and Education BMBF under contract 05H18HRRB1. To explore the fundamental properties of superconducting materials used in modern particle accelerators, high precision surface resistance measurements in a dedicated testing equipment is of key importance. The quadrupole resonator, originally developed at CERN, and then successfully modified at the Helmholtz-Zentrum Berlin, is ideally suited for characterization of samples at temperatures of 1.8 K to > 20 K, RF fields of up to 120 mT and frequencies of 433 MHz, 866 MHz and 1.3 GHz. In the past years, this set-up has been subject of intensive research on both its capabilities and limitations. Yet, one of the main challenges is the accuracy of the surface resistance measurement, which is determined by both the uncertainty in the RF measurement and manufacturing imperfections related to the production tolerances such as quenching and chemical polishing processes, etc. In this contribution, we focus on the influence of key geometrical parameters on operating the quadrupole resonator at the third mode, since the surface resistance measurement shows some unexpected behavior for this frequency. * Design and Fabrication of a Quadrupole-Resonator for Sample R&D by M. Wenskat, W. Hillert, et al. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP102 | |
About • | paper received ※ 25 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP023 | Nitrogen Infusion Sample R&D at DESY | 77 |
SUSP002 | use link to see paper's listing under its alternate paper code | |
|
||
The European XFEL continuous wave upgrade requires cavities with reduced surface resistance (high Q-values) for high duty cycle while maintaining high accelerating gradient for short-pulse operation. A possible way to meet the requirements is the so-called nitrogen infusion procedure. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on sample R&D, with the goal to identify key parameters of the process and establish a stable, reproducible recipe. To understand the underlying processes of the surface evolution, which gives improved cavity performance, advanced surface analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized. Additionally, a small furnace just for samples was set up to change and explore the parameter space of the infusion recipe. Results of these analyses, their implications for the cavity R&D and next steps are presented. | ||
![]() |
Poster MOP023 [3.759 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP023 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP004 | Design and Fabrication of a Quadrupole-Resonator for Sample R&D | 838 |
SUSP042 | use link to see paper's listing under its alternate paper code | |
|
||
Being able to obtain BCS and material properties from the same surface is necessary to gain a fundamental understanding of the evolution of SRF surfaces. A test resonator which will allow to obtain BCS properties from samples is currently under development at the University of Hamburg and DESY and is based on the Quadrupole Resonators developed and operated at CERN and HZB. The current status of the necessary infrastructure, the procurement process and design considerations are shown. In addition, an outline of the planed R&D project with the Quadrupole Resonator will be presented and first RF measurements and surface analysis results of samples will be shown | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP004 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRCAB8 | Systematic Studies of the Second Sound Method for Quench Detection of Superconducting Radio Frequency Cavities | 1239 |
|
||
DESY conducts R&D for SRF cavities, part of the manifold activities are vertical performance tests. Besides the determination of accelerating gradient and quality factor, additional sensors and diagnostic methods are used to obtain more information about the cavity behaviour and the test environment. The second sound system is a tool for spatially resolved quench detection via oscillating super-leak transducers, they record the second sound wave, generated by the quench of the superconducting Niobium. The mounting of the sensors was improved to reduce systematic uncertainties and results of a recent master thesis are presented in the following. Different reconstruction methods are used to determine the origin of the waves. The precision, constraints and limits of these are compared. To introduce an external reference and to qualify the different methods a calibration tool was used. It injects short heat pulses to resistors at exact known space and time coordinates. Results obtained by the different algorithms and measurements with the calibration tool are presented with an emphasis on the possible spatial resolution and the estimation of systematic uncertainties of the methods. | ||
![]() |
Slides FRCAB8 [3.039 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAB8 | |
About • | paper received ※ 21 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |