systematic studies of the second sound method for quench detection of SRF cavities

Lea Steder, Bosse Bein SRF Dresden, 05.07.2019

19th International Conference on RF Superconductivity

9 DRESDEN June 30th – July 5th 2019

ACCELERATOR RESEARCH AND DEVELOPMEN

DESY.

basic concepts

second sound in a nutshell

- > run-time measurement at sensor positions
- > minimisation of spherical error function (RMSE)
- > quench of superconducting cavity
 - \Rightarrow second sound wave

basic concepts

second sound in a nutshell

- > run-time measurement at sensor positions
- > minimisation of spherical error function (RMSE)
- > quench of superconducting cavity
 - \Rightarrow second sound wave

second sound

- > temperature driven entropy wave
- > carrier: He I, superfluid He II produces counter flow
- > propagation velocity @ 2K about 20 m/s

basic concepts

second sound in a nutshell

https://gisgeography.com/trilateration-triangulation-gps

- run-time measurement at sensor positions
- minimisation of spherical error function (RMSE)
- quench of superconducting cavity
 - \Rightarrow second sound wave

second sound

- temperature driven entropy wave
- carrier: He I, superfluid He II produces counter flow
- propagation velocity @ 2K about 20 m/s

oscillating superleak transducer (OST)

- principle of capacitor microphone
- electrodes: Brass body and porous membrane >
- only superfluid Helium can enter pores due to >vanishing viscosity

motivation and goals of studies

a kind of an outline

- **OST installation** improvements
 - coverage and symmetry
- automation of analysis environment >
 - noise filtering ۲
 - guench-time and run-time determination
 - quench-spot reconstruction ۲
 - graphical user interfaces (GUIs)
- comparison of quench-spot reconstruction algorithms
 - impact of systematic uncertainties
 - two approaches: $3 \times 2 + 2$ algorithms
- external reference >
 - the answer to (almost) everything

- \Rightarrow a new level of precision
- \Rightarrow better efficiency & comparability

 \Rightarrow method of choice

 \Rightarrow realistic evaluation of reconstruction methods

OST installation and coverage

precision but not at all costs

- > reproducible fixed 3D positions
 - notches in rods at equator heights
 - measurement accuracy: 10 microns
 - placement accuracy: 1 mm
- > for even better precision
 - exchange of cavities possible w/o removal of OSTs
 - coverage insufficient
- > blind spots to be avoided!
 - ⇒ additional holders in preparation

symmetric positioning

for the sake of unbiased reconstruction

- > signal run-time distance not exactly fitting OST distance
 - ⇒ reconstructed spot biased towards centre-of-mass of all used OSTs

symmetric positioning

for the sake of unbiased reconstruction

- signal run-time distance not exactly fitting OST distance
 - ⇒ reconstructed spot biased towards centre-of-mass of all used OSTs

> effect easy to avoid by OST symmetry around equator plane

quench-time and signal run-time deduction

crucial input for reconstruction

- > noise filtering of OST signal
 - Fourier, Notch filter: multiples of 50 Hz
 - significant reduction
 - ⇒ identify/eliminate sources

quench-time and signal run-time deduction

crucial input for reconstruction

- > noise filtering of OST signal
 - Fourier, Notch filter: multiples of 50 Hz
 - significant reduction
 - ⇒ identify/eliminate sources
- > quench-time t_0 determination (RF signals)

quench-time and signal run-time deduction

crucial input for reconstruction

- > noise filtering of OST signal
 - Fourier, Notch filter: multiples of 50 Hz
 - significant reduction
 - ⇒ identify/eliminate sources
- > quench-time t_0 determination (RF signals)
- > signal run-time t_{OST} deduction
 - unfiltered / filtered signals as input
 - noise envelope, signal quality for peaks, threshold for channel
 - iterative peak finding algorithm, start @ t_0

GUI development

user-friendly software environment

- > OST coordinate definition
 - predefined position lists
 - cavity angle offset
 - liquid Helium temperature

GUI development

user-friendly software environment

- > OST coordinate definition
 - predefined position lists
 - cavity angle offset
 - liquid Helium temperature
- > signal run-time deduction
 - all signal channels visualised for cross-check

GUI development

user-friendly software environment

- > OST coordinate definition
 - predefined position lists
 - cavity angle offset
 - liquid Helium temperature
- > signal run-time deduction
 - all signal channels visualised for cross-check
- > quench-spot finding
 - used OSTs
 - reconstruction method
 - display of quench-spot coordinates

a wide range of methods implemented

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight

a wide range of methods implemented

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- 2. spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight

3 algorithms - surface constraint optional

- > basic algorithm
 - allows w/o surface constraint for quench-spot reconstruction above cavity surface

a wide range of methods implemented

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- 2. spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight

3 algorithms - surface constraint optional

- > basic algorithm
 - allows w/o surface constraint for quench-spot reconstruction above cavity surface
- > average 2nd sound velocity u₂ free parameter w/o assumption 1
 - incorporates temperature and u₂ change, induced by second sound wave itself

a wide range of methods implemented

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- 2. spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight

3 algorithms - surface constraint optional

- > basic algorithm
 - allows w/o surface constraint for quench-spot reconstruction above cavity surface
- > average 2nd sound velocity u₂ free parameter w/o assumption 1
 - incorporates temperature and u₂ change, induced by second sound wave itself
- > spherical quench-spot radius r as free parameter w/o assumption 2
 - considers propagation through Niobium
 - interpretation: none point-like origin or quench-time offset

raytracing algorithm

completely different approach

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- 2. spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight
- 4. none line-of-sight signals contribute via shortest path around cavity
- 5. second sound wave intrinsically assumed to be emitted at cavity surface

raytracing algorithm

completely different approach

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- 2. spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight
- 4. none line-of-sight signals contribute via shortest path around cavity
- 5. second sound wave intrinsically assumed to be emitted at cavity surface

raytracing algorithm

completely different approach

basic assumptions

- constant second sound velocity at given liquid Helium temperature
- spherical wave propagation with point-like origin of waves
- 3. OST and quench-spot in direct line-of-sight
- 4. none line-of-sight signals contribute via shortest path around cavity
- 5. second sound wave intrinsically assumed to be emitted at cavity surface

2 algorithms

- > original algorithm
- > algorithm with line-of-sight requirement

bands draw more precise picture

- > band maps recently implemented
 - each band depicts surface reached by one OST & signal-run time t_{OST}
- > band maps visualise all possible quench locations via overlaps

bands draw more precise picture

- > band maps recently implemented
 - each band depicts surface reached by one OST & signal-run time t_{OST}
- > band maps visualise all possible quench locations via overlaps

> quench-map contains RMSE values belonging to points on surface

bands draw more precise picture

- > band maps recently implemented
 - each band depicts surface reached by one OST & signal-run time t_{OST}
- > band maps visualise all possible quench locations via overlaps

- > quench-map contains RMSE values belonging to points on surface
- > in this case: information is lost

bands draw more precise picture

- > band maps recently implemented
 - each band depicts surface reached by one OST & signal-run time t_{OST}
- > band maps visualise all possible quench locations via overlaps

- > quench-map contains RMSE values belonging to points on surface
- > in this case: information is lost

incorporation of none line-of-sight OST signals seems to distort reconstruction

uncertainty estimation by simulation

know and control weak points

 OST/cavity position, quench/run-time deductions, second sound velocity

uncertainty estimation by simulation

know and control weak points

- OST/cavity position, quench/run-time deductions, second sound velocity
- > variation individual parameters describes impact of uncertainty sources
 - \Rightarrow impact of signal run-time t_{OST} large
 - ⇒ velocity uncertainty uncritical

uncertainty estimation by simulation

know and control weak points

- OST/cavity position, quench/run-time deductions, second sound velocity
- > variation individual parameters describes impact of uncertainty sources
 - ⇒ impact of signal run-time t_{OST} large
 ⇒ velocity uncertainty uncritical
- variation all parameters describes different reconstruction methods
 - surface constrained basic multilateration:
 6.6 mm ± 5.5 mm
 - ⇒ free velocity fitting multilateration:

8.5 mm ± 2.8 mm

external calibration via heat deposition

a must-have we don't have ... yet

- 1. realistic resolution determination for reconstruction algorithms!
- 2. ability of raytracing algorithm to enhance resolution with none line-of-sight signals?

external calibration via heat deposition

a must-have we don't have ... yet

- 1. realistic resolution determination for reconstruction algorithms!
- 2. ability of raytracing algorithm to enhance resolution with none line-of-sight signals?
- > work in progress
- > (almost) no usable signals recorded

external calibration via heat deposition

a must-have we don't have ... yet

- 1. realistic resolution determination for reconstruction algorithms!
- 2. ability of raytracing algorithm to enhance resolution with none line-of-sight signals?
- > work in progress
- > (almost) no usable signals recorded

- > collaboration with INFN LASA Milano established
- > next generation tool under construction at DESY

conclusions second sound quench location

elegant method with lots of potential

- > careful **OST positioning** is important
 - coverage
 - symmetry
 - ⇒ new holders under construction
- > signal run-time deduction is crucial
 - ⇒ further improvements possible via noise suppression, enhanced sampling frequency
- > best **resolutions** of below 10 mm achieved
 - multilateration with surface constraint
 - velocity fitting multilateration algorithm

> calibration method via known second sound wave origin essential

 \Rightarrow under development

Thank you for hanging on...

...and have a safe trip back home!

> Based on

B. Bein

Systematic Studies of a Cavity Quench Localization System, M.S. Thesis, University of Hamburg, 2019, DESY-THESIS-2019-010

> Contact

Deutsches Elektronen-Synchrotron www.desy.de

Lea Steder lea.steder@desy.de