
UNCERTAINTY QUANTIFICATION OF A QUADRUPOLE-RESONATOR
FOR RADIO FREQUENCY CHARACTERIZATION OF

SUPERCONDUCTORS ∗

P. Putek†1, S. Gorgi Zadeh1, University of Rostock, [D-18059] Rostock, Germany
M. Wenskat2,3, W. Hillert2,3, University of Hamburg, [D-22607] Hamburg, Germany

3German Electron Synchrotron, [D-22607] Hamburg, Germany
U. van Rienen1,4, University of Rostock, [D-18059] Rostock, Germany

4 Department Life, Light & Matter, [D-18051] Rostock, Germany

Abstract
To explore the fundamental properties of superconducting

materials used in modern particle accelerators, high preci-
sion surface-resistance measurements in a dedicated testing
equipment are of key importance. The quadrupole resonator,
originally developed at CERN, and then successfully modi-
fied at the Helmholtz-Zentrum Berlin, is ideally suited for
characterization of samples at temperatures of 1.8 K to more
than 20 K, RF fields of up to 120 mT and frequencies of
433 MHz, 866 MHz and 1.3 GHz. In the past years, this
set-up has been subject of intensive research on both its ca-
pabilities and limitations. Yet, one of the main challenges is
the accuracy of the surface resistance measurement, which is
determined by both the uncertainty in the RF measurement
and manufacturing imperfections related to the production
tolerances such as quenching and chemical polishing pro-
cesses, etc. In this contribution, we focus on the influence
of key geometrical parameters on three operating modes of
the quadrupole resonator especially on the third mode since
the surface-resistance measurements show some unexpected
behavior for this frequency.

INTRODUCTION
In modern particle accelerators, superconducting radio

frequency (SRF) cavities are applied to provide large accel-
erating gradients to high current beams while demanding
moderate power requirements. Since power consumption
and maximum accelerating gradient are mainly determined
by the material properties, the surface resistance and the crit-
ical RF-field, the physical features of those materials used
for building cavities are of key importance. Particularly,
systematic research on superconductors requires conducting
precision measurements of the RF properties as a function
of an applied magnetic field, the operating temperature and
the frequency, respectively.

The quadrupole resonator (QPR), originally developed at
CERN [1], and then successfully modified at the Helmholtz-
Zentrum Berlin, is dedicated for the characterization of sam-
ples at temperatures of 1.8 K to more than 20 K, RF fields
of up to 120 mT and frequencies of 433 MHz, 866 MHz and
1.3 GHz [2, 3]. This device is treated as a case study in our
∗ Work supported by the German Federal Ministry for Research and Edu-

cation BMBF under contract 05H18HRRB1.
† piotr.putek@uni-rostock.de

research. Its cross sectional view is schematically shown
in Fig. 1. The structure consists of a pillbox-like niobium
cavity with four vertical niobium rods, collinearly arranged
inside the resonator. The rods are welded to the top-plate
of the cavity. At their lower end, they are bent into semi-
annular pole shoes and positioned a short distance over the
sample surface. Furthermore, at the bottom of the cylinder,
the calorimetry chamber is mounted as inner conductor of a
coaxial structure, which is additionally thermally decoupled
from the resonator. It is equipped with a resistive DC heater
and sensors placed on the bottom of the disc-shaped sample.
This design provides focusing of the RF magnetic field into
the area of the sample. The resulting power dissipation can
then be measured by temperature probes inside the calorime-
try chamber. As a result, the surface resistance RS is studied
by means of the so-called "RF-DC-compensation" method
proposed in [1].
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Figure 1: Schematic view of the Quadrupole Resonator (left)
and a parameterized model of the pole shoes (right).

Measurement Principle and Uncertainties
To measure the surface resistance of a sample, the QPR uti-

lizes the "RF-DC-compensation" method mentioned above.
First, the sample is heated to a desired temperature of in-
terest Tint using the DC heater, which operates in a feed-
back loop with a proportional–integral–derivative (PID) con-
troller. This allows for determining the heater power PDC1
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required for temperature stabilization. Next, the RF is turned
on, which results in increasing the heat load on the sample.
Then, the temperature controller reduces the power in order
to reach the thermal equilibrium for the initial temperature
Tint. In steady state, the reduced heater power PDC2 is de-
termined and recorded. Hence, the RF dissipated power on
the sample surface ΩS is defined by the difference in the DC
heater power and it is given by

PRF(p) = [PDC1(·) − PDC2(·)] =
1
2

∫
ΩS

RS(p) | ®H(p)|2dx

(1)
with the magnetic field ®H and certain model parameters p.

Moreover, assuming that the surface resistance RS is in-
dependent of ®H and homogeneously distributed across ΩS,
it can be pulled outside of the integral in (1) and then be
approximated by

RS(p) ≈
2 [PDC1(p) − PDC2(p)]∫

ΩS
| ®H(p)|2dx

, (2)

where the integral term appearing in the denominator is not
experimentally accessible. But it can be numerically com-
puted as a product of a simulation constant c and the stored
energy U in the cavity. The latter quantity is measured using
a pickup antenna. For details, we refer to [4]. Consequently,
the varied sources of uncertainties are associated with the
above described measurement methodology.

Summarising, the accuracy of the surface resistance mea-
surement is mainly determined by the uncertainty in

• the RF measurement methodology such as cable cali-
bration errors, power meter tolerances,

• manufacturing imperfections, which affect both mate-
rial and geometrical parameters,

• modelling issues such as error propagation, number
representation, model calibration using measurement
quantities, etc.

The associated uncertainties have impact not only on the
measurement methodology, but also on the stability and
operational conditions of the QPR.

Thus, we investigate the uncertainty propagation in the
three-dimensional (3D) model of the QPR. Special focus
is put on the influence of the geometrical parameters on
reliable operation of the QPR under working conditions.

PROBLEM FORMULATION
To study the impact of geometrical parameters on the

functioning of the QPR in terms of objective functions, we
consider a hyperbolic partial differential equation (PDE)
with random input parameters. Thereby, the input varia-
tions, which reflect the manufacturing imperfections arisen
from the industrial processes are modeled by the Poly-
nomial Chaos expansion (PCE) technique. The resulting
stochastic model is solved using the stochastic collocation
method [5, 6].

Stochastic Forward Problem
The mathematical model of the QPR can be described in

terms of a hyperbolic boundary value problem on the spatial
domain D, which is schematically shown in Fig. 1. More
precisely, it is defined by the Helmholtz equation [2]

∇ × ∇ × ®H(θ) − ω2(θ) µ(θ) ϵ(θ) ®H(θ) = 0, (3a)

n · ®H(θ) = 0, (3b)

endowed with the so-called perfect boundary condition.
Here, θ is defined as θ := (r, f , p) ∈ D × F × Π where D,
F and Π refer to a computational domain in R3, f ∈ F in
some frequency range F ⊆ R and Π a multidimensional pa-
rameter domain, respectively. Moreover, assuming that the
corresponding model is characterized by linear and isotropic
(deterministic) materials, σ and µ denote the electric con-
ductivity and the magnetic permeability. The complex elec-
tric permittivity is expressed by ϵ := ϵ + σ

jω with the real
permittivity ϵ and j =

√
−1.

Parametrization of Random Inputs
In the stochastic model (3a)–(3b), we assume that certain

input parameters suffer from uncertainty due to manufac-
turing imperfections, see, e.g., [7, 8]. First, we introduce
ξ1 . . . , ξQ, (Q = 10) normally distributed random variables
to represent 10 variations of geometric parameters. Then,
due to the infinite support of the normal density function
and manufacturing constraints these ξi are transformed to a
bounded domain as follows

pi(ξi) := δi · Υ(ξi), for i = 1, . . . ,Q, Υ(·) := arctan(·),

where δi denotes fixed perturbation magnitudes. This yields
the definition of a random vector p = p(ξ) ∈ RQ with image
space Γ ∈ RQ and with corresponding probability density
function (PDF) ρ. As a result, the numerical computation
can be conducted in (Γ,BQ, ρdp) with the 10-dimensional
Borel space B10 and a probability measure ρdp.

In the end, given an integrable function f , the correspond-
ing expected value is defined as

E[ f (p(ξ))] :=
∫
Γ

f (p) ρ(p) dp,

which induces an inner product of two square integrable
functions f and g

⟨ f (p),g(p)⟩ρ := E ( f (p)g(p))

and a corresponding L2
ρ norm ⟨·, ·⟩ρ [9]. Likewise, the vari-

ance of f (p) is given by

Var[ f (p)] = E[ f (p)2] − E[ f (p)]2. (4)

Pseudo-spectral Approach
Now, for the uncertainty quantification of (3a)–(3b), first

we introduce the truncated PCE [9] for f ∈ L2
ρ in the follow-

ing form

f̃ (p) ≈
M∑
m=0

fmΦm(p), (5)
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where fm are a priori unknown coefficient functions to be
determined by means of the pseudo-spectral approach and
Φm : RQ → R denote a respective basis of multivariate
polynomials, which correspond to the distribution of random
input parameters. For instance, the application of the uni-
form distribution implies the Legendre polynomials, while
the Hermite polynomials correspond to Gaussian-type PDF,
respectively.

In our work, for the calculation of fm in equation (5) the
pseudo-spectral approach is used [5]. According to this
method, the provided solutions at quadrature points is pro-
jected on the basis polynomials using

fm =
〈

f̃ (p),Φm(p)
〉
ρ
. (6)

In particular, to approximate the probabilistic integrals of
(6), the Stroud formulas with a constant weight function [5]
are applied. This yields the multi-dimensional quadrature
rule with associated weights wk and points pk (k = 1, . . . ,K)
in the following form

fm ≈

K∑
k=1

wk f̃
(
p(k)

)
Φm

(
p(k)

)
. (7)

This type of quadrature methods is exact for multivariate
polynomials up to the degree dPC. For dPC = 3 it needs
K = 2Q = 20, while for dPC = 5, it requires K = 2Q2 +
1 = 201 deterministic runs of a respective model. This
approach is highly efficient in particular for large numbers
of parameters [9] but their accuracy is fixed and cannot be
improved. Finally, when using quadrature rules, the expected
value and the variance are approximated by

E
[

f̃ (p)
]
≈ f0, Var

[
f̃ (p)

]
≈

M∑
m=1

| fm |2, (8)

using Φ0 = 1 [5]. Based on (5), also other quantities such as
the local sensitivity and the variance-based global sensitivity
can easily be calculated [10].

Variance-based and Local Sensitivity Analysis
The Sobol decomposition yields the normalized variance-

based sensitivity coefficients in the form [10,11]

Sj =
Vj

Var( f )
with Vj :=

∑
i∈I j

| fi |2 j = 1, . . . ,Q, (9)

with sets Ij := { j ∈ N : Φj(p) is not constant in pj} and
Var( f ) denotes the total variance. Note that 0 ≤ Sj ≤ 1,
where a value close to 1 means a large contribution to the
variance and vice versa.

Furthermore, differentiating (5) with respect to pj allows
for determining ∂ f̃ /∂pj at any value of p defined as

∂ f̃
∂pj

�����
p j=p j

=

N∑
i=0

fi
∂Φi

∂pj

∂ p

∂ξj
, j = 1, . . . ,Q. (10)

The pj-th mean sensitivity is obtained by integrating over
the whole parameter space [9].

NUMERICAL RESULT AND DISCUSSION
In our study, to assess the influence of the particular ran-

dom parameters within the design of the QPR, the following
stochastic objective functions are considered
- operating frequencies to elaborate their deviation :

f1,1(p) = 0.429[GHz], (11a)
f1,2(p) = 0.866[GHz],
f1,3(p) = 1.311[GHz],

- the focusing factor to investigate the focus of the magnetic
fields onto the sample:

f2,k(p) =
1

2U

∫
ΩS

��� ®H(p)
���2 dx, (11b)

- the homogeneity factor to measure the homogeneity of the
magnetic field on the sample :

f3,k(p) = ⟨H2(p)⟩ΩS/Ĥ2
ΩS
(p), (11c)

- the operating range to increase the maximum attainable
field on the sample:

f4,k(p) = ĤΩS (p)/ĤΩR (p), (11d)

- the risk of field emission to investigate the limitation caused
by high electric fields:

f5,k(p) = ĤΩS (p)/ÊΩR (p), (11e)

- the dimensionless factor to study measurement bias by
calculating the ratio of the losses on the sample to the surface
integral of the square of the magnetic field that penetrates
into the coaxial gap around the calorimetry chamber:

f6,k(p) =

∫
ΩS

��� ®H(p)
���2 dx∫

ΩF

��� ®H(p)
���2 dx

(11f)

with the subscript k = 1,2,3 used for particular operating
frequencies. Ĥ = | ®̂H |, Ê = | ®̂E | and ⟨·⟩ denote the peak
magnetic field and the peak electric field calculated either
on the surface of the sample ΩS or on the surface of the rods
ΩR, and the average operator, respectively. ΩF refers to the
region of the flange (calculated at the coaxial gap, 70 mm
below the surface of the sample) and U is the stored energy
in the QPR. A detailed description of the parameters is given
in [2].

For the uncertainty quantification, we assume that cer-
tain geometrical parameters suffer from uncertainty due to
manufacture imperfections, see, e.g., , [7, 8]. These input
variations are modeled using Hermite polynomials of order
dPC = 3. More specifically, in our work we consider Q = 10
normally distributed geometrical variables, which detailed
description is summarized in the Table 1. For all uncertain
geometrical parameters, the lower δL j and upper bounds
δUj are specified by x j ∓ 3 · γj for ( j = 1, . . . ,Q). Since
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Table 1: Mean Values x j and Standard Deviations γj of
Random Input Variables

Name x j γj

p1 (gap) 0.54 [mm] 0.054 [mm]
p2 (rrods) 13.40 [mm] 1.34 [mm]
p3 (rloop) 4.73 [mm] 0.4725 [mm]
p4 (dloop) 5.20 [mm] 0.52 [mm]
p5 (wloop) 39.76 [mm] 3.976 [mm]
p6 (rcoil) 22.41 [mm] 2.241 [mm]
p7 (angleBentRight) 0.0 [deg] 0.33 [deg]
p8 (angleBentLeft) 0.0 [deg] 0.33 [deg]
p9 (angleTiltSpleOx) 0.0 [deg] 0.33 [deg]
p10 (angleTiltSpleOy) 0.0 [deg] 0.33 [deg]

the Stroud-3 formula is applied to determine the polynomial
coefficients, it requires K = 20 deterministic simulations of
the finite elements model. For this purpose, CST STUDIO
SUITE® has been used. For some input variables that largely
break the symmetry of the structure (e.g. large values of p7
and p8), the operating mode divided into two modes of the
same type. The energy of each mode was more concentrated
around one of the pair of rods. In such cases where two
modes with a field pattern similar to the operating mode ex-
isted, the one with higher value of f2 was considered as the
operating mode. The results for the global sensitivity analy-
sis conducted for the operating frequencies of the QPR are
shown in Figs. 2,3 and 4. Finally, a detailed analysis of the
QPR design versus uncertain geometrical parameters is sum-
marized in Tables 2, 3 and 4. Additionally, we computed
approximations of the PDF for the chosen random function-
als (11a), (11c) and (11f) for the Gaussian input variables ξ
using the response surface models (5), see Figs. 5–7.
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Figure 2: Result of the global sensitivity analysis for the first
mode.

CONCLUSION
In our study, we have successfully conducted the UQ

analysis considering three operating frequencies in order to
investigate the impact of uncertain geometrical parameters
related to manufacturing tolerances/imperfections onto the
design of the QPR. Specifically, a variance-based sensitivity
analysis seems to be a very promising and useful tool. It
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Figure 3: Result of the global sensitivity analysis for the
second mode.
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Figure 4: Result of the global sensitivity analysis for the
third mode.

Table 2: Mean Values and Standard Deviations of Objective
Functions for the First Mode

Symbol E
[

fj (p)
] √

Var
[

fj (p)
]

f1 0.422136 [GHz] 8.5744 [MHz]
f2 6.2040e+07 [A2/J] 2.5793e+07 [A2/J]
f3 0.1297 [1/1] 0.0194 [1/1]
f4 0.8454[1/1] 0.0401 [1/1]
f5 8.9747 [mT/(MV/m)] 1.6767 [mT/(MV/m)]
f6 2.1080e+06 [1/1] 1.5469e+06 [1/1]

Table 3: Mean Values and Standard Deviations of Objective
Functions for the Second Mode

Symbol E
[

fj (p)
] √

Var
[

fj (p)
]

f1 0.8543 [GHz] 11.139 [MHz]
f2 5.3379e+07 [A2/J] 2.4072e+07 [A2/J]
f3 0.1236 [1/1] 0.0205 [1/1]
f4 0.8232 [1/1] 0.0709 [1/1]
f5 5.4384 [mT/(MV/m)] 0.7539 [mT/(MV/m)]
f6 1.0125e+06 [1/1] 8.9645e+05 [1/1]

allows for determining the most influential input parameters,
which are predominately responsible for the variation of ob-
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Table 4: Mean Values and Standard Deviations of Objective
Functions for the Third Mode

Symbol E
[

fj (p)
] √

Var
[

fj (p)
]

f1 1.3003 [GHz] 11.145 [MHz]
f2 5.1766e+07 [A2/J] 2.16e+07 [A2/J]
f3 0.1148 [1/1] 0.0142 [1/1]
f4 0.8404 [1/1] 0.0544 [1/1]
f5 3.9581 [mT/(MV/m)] 0.5316 [mT/(MV/m)]
f6 2.3394e+05[1/1] 1.8041e+05 [1/1]
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Figure 5: PDF of functional (11a), i.e. of the three operating
frequencies.
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Figure 6: PDF of functional (11c), i.e. of the homogeneity
factor for the three operating frequencies.
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Figure 7: PDF of functional (11f), i.e. of the dimensionless
factor to study measurement bias.

jective functions. Results of this decomposition are shown
in Figs. 2, 3 and 4. This knowledge is essential during the
optimization of the QPR under uncertainties. Though we
considered the preliminary robustly optimized structure of
the QPR [8], the influence of the bending angle seems to
be crucial for the functioning of the QPR. The small value
of f6 for the third mode (in comparison with the other two
operating modes) is an indication that the field of this mode
penetrates deeper into the coaxial gap around the calorime-
try chamber. This allows for explaining the problems with
the measurement bias of the surface resistance at the third
mode. In order to further investigate this phenomenon and
the influence of the bending of the rods during operation
of the cavity, the electromagnetic-stress coupled problem
needs to be formulated and solved. This will be considered
as a future research direction.

REFERENCES
[1] E. Mahner, S. Calatroni, E. Chiaveri, E. Häbel, and J. M.

Tessier, “A new instrument to measure the surface resistance
of superconducting samples at 400 MHz”, Review of Scientific
Instruments, vol. 74, no. 7, pp. 3390–3394, 2003.

[2] R. Kleindienst, “Radio Frequency Characterization of Su-
perconductors for Particle Accelerators”, Ph.D. dissertation,
Universität Siegen, Germany, 2017.

[3] R. Kleindienst, O. Kugeler, and J. Knobloch, “Development
of an Optimized Quadrupole Resonator at HZB”, in Proc.
SRF’13, Paris, France, Sep. 2013, paper TUP074, pp. 614–
616.

[4] S. Aull, S. Doebert, T. Junginger, and J. Knobloch, “High
Resolution Surface Resistance Studies”, in Proc. SRF’13,
Paris, France, Sep. 2013, paper WEIOC01, pp. 785–788.

[5] D. Xiu, “Efficient Collocational Approach for Parametric
Uncertainty Analysis”, Commun. in Comput. Phys., vol. 2,
no. 2, pp. 293–309, 2007.

[6] P. Putek, “Nonlinear magnetoquasistatic interface problem in
a PM machine with stochastic PDE constraints,” Engineering
Optimization, pp. 1–24, Mar. 2019.

[7] S. Keckert, T. Junginger, O. Kugeler, J. Knobloch, “The Chal-
lenge to Measure n Surface Resistance on SRF Samples”,
in Proc. IPAC’18, Vancouver, Canada, Apr.-May 2018, pp.
2812–2815. doi:10.18429/JACoW-IPAC2018-WEPML049

[8] P. Putek, S. Gorgi Zadeh, M. Wenskat, O. Kugeler and U.
van Rienen, “Shape optimization of quadrupole resonator
for the RF characterization of superconductors”, in Proc. of
COMPUMAG 2019, Paris, France. (to appear)

[9] D. Xiu, “Numerical Methods for Stochastic Computations:
A Spectral Method Approach”, Princeton University Press,
2010.

[10] B. Sudret, “Global sensitivity analysis using polynomial
chaos expansions”, Reliability Engineering & System Safety,
vol. 93, no. 7, pp. 964–979, 2008.

[11] P. Putek, E. J. W. ter Maten, M. Günther, and J. K. Sykulski,
“Variance-based robust optimization of a Permanent Magnet
synchronous machine”, IEEE Trans. on Magn., vol. 54, no.
3, Art no. 8102504, 2018.

19th Int. Conf. on RF Superconductivity SRF2019, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-211-0 doi:10.18429/JACoW-SRF2019-THP102

THP102
1172

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Cavities - Fabrication
quality assurance


