Paper | Title | Page |
---|---|---|
THTU1 |
Basic Principles of RF Superconductivity | |
|
||
In this lecture, the basic principles of RF superconductivity are introduced, including electrodynamics of normal conductors superconductivity, type-I and type-II superconductors, introduction to BCS and GL theories, surface resistance of superconductors, field dependence of surface resistance and introduction to performance limitations. | ||
![]() |
Slides THTU1 [1.962 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP018 | Recent Results From Nb3Sn Single Cell Cavities Coated at Jefferson Lab | 65 |
|
||
Funding: Partially authored by Jefferson Science Associates under contract no. DE¬AC05¬06OR23177. Supported by Office of High Energy Physics under grants DE-SC-0014475 to the College of William and DE-SC-0018918 to Virginia Tech Because of superior superconducting properties (Tc ~ 18.3K, Hs h ~ 425 mT and delta ~ 3.1 meV) compared to niobium, Nb3Sn promise better RF performance (Q0 and Eacc) and/or higher operating temperature (2 K Vs 4.2 K) for SRF cavities. Nb3Sn-coated SRF cavities are produced routinely by depositing a few micron-thick Nb3Sn films on the interior surface of Nb cavities via tin vapor diffusion technique. Early results from Nb3Sn cavities coated with this technique exhibited precipi-tous low field Q-slope, also known as Wuppertal slope. Several Nb3Sn single cell cavities coated at JLab ap-peared to exhibit similar Q-slope. RF testing of cavi-ties and materials study of witness samples were con-tinuously used to modify the coating protocol. At best condition, we were able to produce Nb3Sn cavity with Q0 in excess of ~ 5×1010 at 2 K and ~ 2×1010 at 4 K up the accelerating gradient of ~15 MV/m, without any significant Q-slope. In this presentation, we will dis-cuss recent results from several Nb3Sn coated single-cell cavities linked with material studies of witness samples, coating process modifications and the possi-ble causative factors to Wuppertal slope. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP018 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP084 | A Simple Variable Coupler for the Cryogenic Test of SRF Cavities | 282 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The cryogenic rf tests of SRF cavities in vertical cryostats is typically carried out using fixed-length antennae to couple rf power into the cavity and to probe the energy stored into the cavity. Although variable couplers have been designed, built and used in the past, they are often a complex, costly, not very reliable auxiliary component to the cavity test. In this contribution we present the design and implementation of a simple variable rf antenna which has about 50 mm travel, allowing to obtain about four orders of magnitude variation in Qext -value. The motion of the antenna is driven by a motorized linear feedthrough outside of the cryostat. The antenna can easily be mounted on the most common type of cavity flanges. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP084 | |
About • | paper received ※ 18 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP012 | Evaluation of High Performance Large Grain Medium Purity SRF Cavity From KEK | 415 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. We presented the RF measurement on a 1.3 GHz single cell cavity fabricated at KEK using large grain ingot niobium with RRR=107. The cavity reached to 35 MV/m with Q0 = 2.0×10zEhNZeHn at 2.0 K, record performance on the cavity made from medium purity ingot niobium. The cavity was cool down with different temperature gradient along the cavity axis in order to understand the flux expulsion mechanism when the cavity does through the superconducting transition and effect of trap residual magnetic field on the residual resistance. The measurement showed the excellent flux expulsion with the flux trapping sensitivity of 0.29 nΩ/mG for electro polished surface and 0.44 nΩ/mG for cavity followed by low temperature baking at 120°C for 12 hours. We acknowledge KEK for sending this cavity for evaluations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP012 | |
About • | paper received ※ 17 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP049 | Maximum Performance of Cavities Affected by the High-field Q-slope (HFQS) | 533 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The work of I. P. and A. G. is supported by NSF Grant PHY 100614-010. The performance of high-purity, bulk niobium SRF cavities treated by chemical processes such as BCP or EP is limited by the so-called high-field Q-slope (HFQS). Several models and experimental studies have been proposed and performed over the years to understand the origin of these anomalous losses but a general consensus on what these orgins are is yet to be established. In this contribution, we present the results from the RF tests of several 1.3 GHz single-cell cavities limited by the HFQS and tested using a variable input coupler. This allowed to maintain close to critical coupling even at high field and the data showed that the HFQS did not saturate and that in some cases a power dissipation of up to 200 W at 2 K could be sustained without quench. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP049 | |
About • | paper received ※ 21 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP050 | A Multi-layered SRF Cavity for Conduction Cooling Applications | 538 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Some of the work was supported by the 2008 PECASE Award of G. Ciovati. I. Parajuli is supported by NSF Grant PHYS-100614-010 Industrial application of SRF technology would favor the use of cryocoolers to conductively cool SRF cavities for particle accelerators, operating at or above 4.3 K. In order to achieve a lower surface resistance than Nb at 4.3 K, a superconductor with higher critical temperature should be used, whereas a metal with higher thermal conductivity than Nb should be used to conduct the heat to the cryocoolers. A standard 1.5 GHz bulk Nb single-cell cavity has been coated with a ~2 µm thick layer of Nb3Sn on the inner surface and with a 5 mm thick Cu layer on the outer surface for conduction cooled applications. The cavity performance has been measured at 4.3 K and 2.0 K in liquid He. The cavity reached a peak surface magnetic field of ~40 mT with a quality factor of 6×109 and 3.5×109 at 4.3 K, before and after applying the thick Cu layer, respectively. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP050 | |
About • | paper received ※ 21 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP052 | Design and Commissioning of a Magnetic Field Scanning System for SRF Cavities | 547 |
SUSP031 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by NSF Grant 100614-010. G. C. is supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Trapped magnetic vortices are one of the leading sources of residual losses in SRF cavities. Mechanisms of flux pinning depend on the materials treatment and cool-down conditions. A magnetic field scanning system using flux-gate magnetometers and Hall probes has been designed and built to allow measuring the local magnetic field of trapped vortices normal to the outer surface of 1.3 GHz single-cell SRF cavities at cryogenic temperatures. Such system will allow inferring the key information about the distribution and magnitude of trapped flux in the SRF cavities for different material, surface preparations and cool-down conditions. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP052 | |
About • | paper received ※ 22 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP050 | Measurement of the Magnetic Field Penetration into Superconducting Thin Films | 978 |
SUSP030 | use link to see paper's listing under its alternate paper code | |
|
||
The magnetic field at which first flux penetrates is a fundamental parameter characterizing superconducting materials for SRF cavities. Therefore, an accurate technique is needed to measure the penetration of the magnetic field directly. The conventional magnetometers are inconvenient for thin superconducting film measurements because these measurements are strongly influenced by orientation, edge and shape effects. In order to measure the onset of field penetration in bulk, thin films and multi-layered superconductors, we have designed, built and calibrated a system combining a small superconducting solenoid capable of generating surface magnetic field higher than 500 mT and Hall probe to detect the first entry of vortices. This setup can be used to study various promising alternative materials to Nb, especially SIS multilayer coatings on Nb that have been recently proposed to delay the vortex penetration in Nb surface. In this paper, the system will be described and calibration will be presented. | ||
![]() |
Poster THP050 [1.201 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP050 | |
About • | paper received ※ 20 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP068 | Evaluation of Low Heat Conductivity RF Cables | 1045 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. New potential applications of superconducting radio-frequency can be envisioned with conduction cooling of the cavities using cryocoolers. In this case, the total heat load to the cryocoolers have to be carefully managed to assure sufficient margin to operate the cavity at an acceptable accelerating gradient. The static and dynamic heat load from rf cables connected to the cavity can be a significant contribution to the total heat load. In this contribution we report the results from measurements of the temperature profile at 1.3 GHz for two low heat conductivity rf cables, as a function of the rf power and with one end of the cable in thermal contact with a liquid helium bath at 4.3 K. A parametric model of the two cables was developed with ANSYS to match the temperature profiles and calculate the heat load at the cold end of the cable. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP068 | |
About • | paper received ※ 21 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |