Author: Gruber, T.
Paper Title Page
MOBA08 Niobium Impurity-Doping Studies at Cornell and CM Cool-Down Dynamic Effect on Q0 55
 
  • M. Liepe, B. Clasby, R.G. Eichhorn, B. Elmore, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  As part of a multi-laboratory research initiative on high Q0 niobium cavities for LCLS-II and other future CW SRF accelerators, Cornell has conducted an extensive research program during the last two years on impurity-doping of niobium cavities and related material characterization. Here we give an overview of these activities, and present results from single-cell studies, from vertical performance testing of nitrogen-doped nine-cell cavities, and from cryomodule testing of nitrogen-doped nine-cell cavities.  
slides icon Slides MOBA08 [8.983 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB042 Fundamental Studies on Doped SRF Cavities 187
 
  • D. Gonnella, T. Gruber, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco, B. Yu
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
Recently, doping with nitrogen has been demonstrated to help SRF cavities reach significantly higher intrinsic quality factors than with standard procedures. However, the quench fields of these cavities have also been shown to be frequently reduced. Here we report on fundamental studies of doped cavities, investigating the source of reduced quench field and exploring alternative dopants. We have focused on studying the quench of nitrogen-doped cavities with temperature mapping and measurements of the flux penetration field using pulsed power to investigate maximum fields in nitrogen doped cavities. We also report on studies of cavities doped with other gases such as helium. These studies have enabled us to shed light on the mechanisms behind the higher Q and lower quench fields that have been observed in cavities doped with impurities.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB084 Performance of Nitrogen-Doped 9-Cell SRF Cavities in Vertical Tests at Cornell University 328
 
  • G.M. Ge, R.G. Eichhorn, B. Elmore, F. Furuta, D. Gonnella, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connell, J. Sears, E.N. Smith
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University treated five LCLS-II 9-cell cavities by nitrogen-doping recipe. In this paper, we reported the performance of these 9-cell cavities. In the treatments, the nitrogen recipes are slightly different. The cavities have been firstly doped under high nitrogen pressure; after the vertical tests some of the cavities has been reset the surface and re-doped under light nitrogen pressure. The detail of the cavity preparation and test results will be shown. The comparison of the different recipes will be discussed.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB093 Vertical Electropolishing Studies at Cornell 364
 
  • F. Furuta, B. Elmore, G.M. Ge, T. Gruber, G.H. Hoffstaetter, D.K. Krebs, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T.D. Hall, M.E. Inman, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • H. Hayano, T. Saeki
    KEK, Ibaraki, Japan
  • Y.I. Ida, K.N. Nii
    MGH, Hyogo-ken, Japan
 
  Vertical Electro-Polishing (VEP) has been developed and applied on various SRF R&Ds at Cornell as primary surface process of Nb. Recent achievements had been demonstrated with nitrogen doped high-Q cavities for LCLS-II. Five 9-cell cavities processed with VEP and nitrogen doping at Cornell showed the high average Qo value of 3.0·1010 at 16MV/m, 2K, during vertical test. this achievement satisfied the required cavity specification values of LCLS-II(2.7·1010 at 16MV/m, 2K). We will report the details of these achievements and new VEP collaboration projects between Cornell and companies.  
poster icon Poster MOPB093 [4.364 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUBA04 Nb3Sn Cavities: Material Characterization and Coating Process Optimization 501
 
  • D.L. Hall, T. Gruber, J.J. Kaufman, M. Liepe, J.T. Maniscalco, S. Posen, B. Yu
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296)
Recent progress on vapour diffusion coated Nb3Sn SRF cavities makes this material a very promising alternative for CW medium field SRF applications. In this paper we report on several systematic studies to determine the sources currently limiting the performance of Nb3Sn cavities to determine improved coating parameters to overcome these limitations. These include a detailed study of the sensitivity of Nb3Sn to trapped ambient magnetic flux, a first measurement of the field dependence of the energy gap in Nb3Sn and detailed measurements of the stoichiometry of the obtained Nb3Sn coatings with synchrotron x-ray diffraction and STEM. Initial results from a study on the impact of the coating process parameters on energy gap, Q-slope, and residual resistance, show clear dependencies, and thus directions for process optimization.
 
slides icon Slides TUBA04 [3.872 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB030 Recent Results from the Cornell Sample Host Cavity 626
 
  • J.T. Maniscalco, B. Clasby, T. Gruber, D.L. Hall, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE/NSF
Many novel materials are under investigation for the future of superconducting radio-frequency accelerators (SRF). In particular, thin-film materials such as Nb3Sn, NbN, SIS multilayers, and also thin-film niobium on copper, may offer improvements in cost efficiency and RF performance over the standard niobium cavities. To avoid the difficulties of depositing thin films on full cavities, Cornell has developed a TE-mode sample host cavity which allows for RF measurements of large, flat samples at fields up to and over 100 mT. We present recent performance results from the cavity, reaching record high fields and quality factor using a niobium calibration plate. We also discuss plans for future collaborations.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB044 High Quality Factor Studies in SRF Nb3Sn Cavities 661
 
  • D.L. Hall, B. Clasby, H. Conklin, R.G. Eichhorn, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638
A significant advantage of Nb3Sn coated on niobium over conventional bulk niobium is the substantial reduction in the BCS losses at equal temperatures of the former relative to the latter. The quality factor of a 1.3 GHz Nb3Sn cavity is thus almost entirely dictated by the residual resistance at temperatures at and below 4.2 K, which, if minimised, offers the ability to operate the cavity in liquid helium at atmospheric pressure with quality factors exceeding 4·1010. In this paper we look at the impact of the cooldown procedure – which is intrinsically linked to the effect of spatial and temporal gradients – and the impact of external ambient magnetic fields on the performance of a Nb3Sn cavity.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB045 Surface Analysis and Material Property Studies of Nb3Sn on Niobium for Use in SRF Cavities 665
 
  • D.L. Hall, H. Conklin, T. Gruber, J.J. Kaufman, M. Liepe, J.T. Maniscalco, B. Yu
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296)
Studies of superconducting Nb3Sn cavities and samples at Cornell University and Argonne National Lab have shown that current state-of-the-art Nb3Sn cavities are limited by material properties and imperfections. In particular, the presence of regions within the Nb3Sn layer that are deficient in tin are suspected to be the cause of the lower than expected peak accelerating gradient. In this paper we present results from a material study of the Nb3Sn layer fabricated using the vapour deposition method, with data collected using AFM, SEM, TEM, EDX, and XRD methods as well as with pulsed RF testing.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THBA05 Higher Order Mode Absorbers for High Current SRF Applications 1036
 
  • R.G. Eichhorn, J.V. Conway, T. Gruber, Y. He, G.H. Hoffstaetter, Y. Li, M. Liepe, T.I. O'Connell, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, M. Tigner
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Efficient damping of the higher-order modes (HOMs) of the superconducting cavities is essential for any high current operation. The talk will provide an overview on the latest advances of HOM absorber development for high intensity SRF applications. As the ideal absorber does not exist, the different conceptual approaches will be presented and the associated issues are outlined. Design examples from various labs will be given that help explain the issues and resolutions. Some focus will be given to the Cornell HOM beamline absorber that was design for high current, short bunch operation with up to 400 W heating. The design will be reviewed and testing results will be reported.  
slides icon Slides THBA05 [4.022 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)