Paper | Title | Other Keywords | Page |
---|---|---|---|
MOIBA01 | Research on Beam Dynamics of a 2 GeV 6 MW Isochronous FFA | resonance, extraction, focusing, cyclotron | 4 |
|
|||
Funding: This work was supported in part by the National Natural Science Foun-dation of China under Grant 12135020. CIAE has proposed an innovative design for a 2 GeV/6 MW isochronous FFA in 2019. This study aims to present the results of beam dynamics research, demonstrating the feasibility to accelerate the intense proton beam with the energy beyond 1 GeV limitation of isochronous cyclotrons. By introducing 1st - 3rd radial gradient of peak magnetic field to simulate the quadrupole to octupole component of the isochronous machine, three different lattice designs are obtained. Adjusting the radial gradient of the peak field allows an option to avoid or cross integer resonances. Various inherent and coupled resonances are investigated subsequently, with a focus on the destructive effects of the Vr=3 on the transverse phase space. Based on PIC method, we simulate the vortex motion caused by space charge in a large-scale alternating gradient field. Results indicated that the radial size of beam is ~ 10 mm, which is expected to be improved after considering the effects of neighboring bunches. Additionally, high-Q RF cavities and precession extraction further enlarge the turn separation to 30 mm, ensuring efficient beam extraction in the extraction region. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOIBA01 | ||
About • | Received ※ 30 June 2023 — Revised ※ 08 July 2023 — Accepted ※ 11 July 2023 — Issued ※ 02 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPB004 | Lowest Longitudinal and Transverse Resistive-wall Wake and Impedance for Nonultra-relativistic Beams | wakefield, dipole, impedance, electron | 21 |
|
|||
With the development of the steady-state microbunch(SSMB) storage ring, its parameters reveal that the ultra-relativistic assumption which is wildly used is not valid for the electron beam bunch train. For a bunch train with a length in the 100nm range, spacing of 1um, and energy in the hundred MeV range, the action angle of the space charge force is estimated by {r/γ}. The space charge effect of the mirror current loop formed in the wall with a scale of 1cm will have a sustained effect on approximately dozens of microbunches behind the source particle. The strength of the interaction between such bunches and the potential instability it may cause needs careful evaluation. At the same time, the effect of the space charge inside a single bunch due to space charge effect also needs to be considered. We reorganized the lowest-order longitudinal wakefield under non-extreme relativistic conditions, and modified the inconsistent part in the theoretical derivation in some essays of the lowest-order transverse wakefield. We present the modified theoretical results and analysis. The action area are then divided into three parts. It lays foundation in future research. | |||
![]() |
Poster MOPB004 [1.278 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOPB004 | ||
About • | Received ※ 30 June 2023 — Revised ※ 08 July 2023 — Accepted ※ 11 July 2023 — Issued ※ 22 November 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPB005 | Design of Beam Dynamics for a High-Power DC Proton Accelerator at the MeV Level | focusing, proton, acceleration, neutron | 24 |
|
|||
This paper aims to design the beam dynamics of a MeV-level high-power DC proton accelerator for use in high-voltage accelerators. The high-power proton accelerator has essential applications such as ion implantation equipment, neutron therapy equipment, and accelerator-based neutron source equipment. With the increasing use of high-voltage generators due to their stable and reliable operation, these accelerators have gained significant popularity in the field. The paper discusses the design considerations of the accelerator equipment, including the functions and requirements of the acceleration tube, electric field distribution, and voltage holding issues. Additionally, the paper focuses on the design aspects of beam optics, encompassing topics such as electric field distribution, beam focusing, beam transmission, divergence, and the impact of space charge effects on beam quality. Calculations and optimizations are performed based on the parameters and requirements specific to high-voltage accelerators. Finally, the paper presents and analyzes the results of the accelerator tube and beam optics design. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOPB005 | ||
About • | Received ※ 30 June 2023 — Revised ※ 09 July 2023 — Accepted ※ 11 July 2023 — Issued ※ 04 October 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPB008 | Approximation of Space Charge Effect in the Presence of Longitudinal Magnetic Fields | simulation, controls, electron, emittance | 27 |
|
|||
The space charge effect plays a significant role in the evolution of phase space during beam transport. Applying an external longitudinal magnetic field has been shown to effectively reduce beam expansion through the mechanism of beam rotation. In this article, we present a fast approximation algorithm for estimating the impact of an external magnetic field on beam expansion. The algorithm enables efficient computations and provides insights into controlling the phase space dynamics of the beam in the presence of longitudinal magnetic fields. | |||
![]() |
Poster MOPB008 [0.447 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOPB008 | ||
About • | Received ※ 30 June 2023 — Revised ※ 11 July 2023 — Accepted ※ 12 July 2023 — Issued ※ 30 April 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPB006 | Study on XiPAF Synchrotron Nonlinear Dynamics | resonance, synchrotron, injection, simulation | 92 |
|
|||
Funding: Work supported by National Natural Science Foundation of China (No.12075131) Xi’an Proton Application Facility (XiPAF) has been operational since 2020, which can accumulate 2e11 protons after injection and 1e11 protons after acceleration. In this paper, we have investigated the XiPAF synchrotron nonlinearity by simulation and experiments, the beam loss occurs with resonance vx+2vy=5 in the absence of space charge, and resonance 2vx-2vy=0 in the presence of space charge. The stripping foil also plays an important role due to its multiple scattering effect and ionization energy loss effect. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-TUPB006 | ||
About • | Received ※ 29 June 2023 — Revised ※ 08 July 2023 — Accepted ※ 11 July 2023 — Issued ※ 04 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||