Paper | Title | Page |
---|---|---|
MOPSA07 | 200 MeV Linear Electron Accelerator - Pre-Injector for a New Kurchatov Synchrotron Radiation Source | 145 |
|
||
New linear electron accelerator (linac) with an energy of about 200 MeV (or 300 MeV in a high-energy version) is being proposed for injection into the booster synchrotron, which is being developed for the reconstruction of the SIBERIA-2 accelerator complex with the aim of upgrade to 3rd generation source at the NRC «Kurchatov Institute». A modernized linac and its specific elements layout will described in the report. The modeling of accelerating structure and optimization of electrodynamics characteristics and fields distribution and geometric in order to reduce the beam spectrum at the output of the linac was done. A step-by-step front-to-end beam dynamics simulation results will discuss. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA07 | |
About • | Received ※ 29 September 2021 — Revised ※ 30 September 2021 — Accepted ※ 07 October 2021 — Issued ※ 12 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUB07 | The Conceptual Design of the 7.5 MeV/u Light Ion Injector | 51 |
|
||
The new linac for light ion beam injection is under development at MEPhI. Such linac was proposed for acceleration of 7.5 MeV/u ion beam with A/Z=1-3 and current up to 5 mA for proton and 0.4 pmA for light ions. The linac general layout will include two types of ion sources: ECR ion source for proton anf He ions and laser ion source for ions form Li to O. Following the LEBT ions will be bunched and accelerated to the final energy using RFQ section and 14 IH cavities. These IH-cavities will be identical (divided into two groups) and independently phased. All cavities will operate on 81 MHz. Results of the beam dynamics simulations and the cavities design will presented in the report. | ||
![]() |
Slides TUB07 [5.210 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUB07 | |
About • | Received ※ 16 September 2021 — Revised ※ 25 September 2021 — Accepted ※ 27 September 2021 — Issued ※ 14 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THC03 | Numerical Simulations of Space Charge Dominated Beam Dynamics in Experimentally Optimized PITZ RF Photogun | 89 |
|
||
Funding: The reported study was partly funded by RFBR, project number 19-29-12036 Discrepancies between experimental data and comput-er simulation results of picosecond highly charged beam photoemission are discussed. New space charge limited emission numerical model with positively charged ions arising in the cathode region and dynamically changing during the emission is presented. Estimates on the time characteristics of the charge migrating process in the semiconductor region are given. The numerical results are compared with the results of other numerical models and with experimental observations at the Photo Injector Test facility at DESY in Zeuthen (PITZ) |
||
![]() |
Slides THC03 [1.292 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-THC03 | |
About • | Received ※ 21 September 2021 — Accepted ※ 23 September 2021 — Issued ※ 17 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |