Paper |
Title |
Page |
FRCAMH01 |
Status of the Nuclotron |
150 |
|
- A.O. Sidorin, N.N. Agapov, A.V. Alfeev, V. Andreev, V. Batin, O.I. Brovko, V.V. Bugaev, A.V. Butenko, D.E. Donets, A.V. Eliseev, V.V. Fimushkin, E.V. Gorbachev, A. Govorov, A.Yu. Grebentsov, E.V. Ivanov, V. Karpinsky, H.G. Khodzhibagiyan, A. Kirichenko, V. Kobets, A.D. Kovalenko, O.S. Kozlov, K.A. Levterov, V.A. Mikhailov, V.A. Monchinsky, A. Nesterov, Yu.M. Nozhenko, A.L. Osipenkov, S. Romanov, P.A. Rukojatkin, A.A. Shurygin, I. Slepnev, V. Slepnev, A.V. Smirnov, E. Syresin, G.V. Trubnikov, A. Tuzikov, B. Vasilishin, V. Volkov
JINR, Dubna, Moscow Region, Russia
- A. Belov
RAS/INR, Moscow, Russia
- I.V. Gorelyshev, A.V. Philippov
JINR/VBLHEP, Dubna, Moscow region, Russia
- A.O. Sidorin
St. Petersburg University, St. Petersburg, Russia
|
|
|
Since last RuPAC two runs of the Nuclotron operation were performed: in January - March of 2015 and June 2016. Presently we are providing the run, which has been started at the end of October and will be continued up to the end of December. The facility development is aimed to the performance increase for current physical program realization and preparation to the NICA Booster construction and Baryonic Matter at Nuclotron experiment.
|
|
|
Slides FRCAMH01 [20.777 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
FRCAMH05 |
Booster Synchrotron at NICA Accelerator Complex |
160 |
|
- A. Tuzikov, O.I. Brovko, A.V. Butenko, A.V. Eliseev, A.A. Fateev, V. Karpinsky, H.G. Khodzhibagiyan, S.A. Kostromin, I.N. Meshkov, V.A. Mikhaylov, A.O. Sidorin, A.I. Sidorov, A.V. Smirnov, E. Syresin, G.V. Trubnikov, V. Volkov
JINR, Dubna, Moscow Region, Russia
- O. Anchugov, V.A. Kiselev, D.A. Shvedov, A.N. Zhuravlev
BINP SB RAS, Novosibirsk, Russia
|
|
|
NICA is the new complex being constructed on the JINR aimed to provide collider experiments with ions up to aurum at energy of 4.5x4.5 GeV/u. The NICA layout includes 600 MeV/u Booster synchrotron as a part of the injection chain of the NICA Collider. The main goals of the Booster are the following: accumulation of 4E109 Au31+ ions; acceleration of the heavy ions up to energy required for effective stripping; forming of the required beam emittance with electron cooling system. The layout makes it possible to place the Booster having 210.96 m circumference and four fold symmetry lattice inside the yoke of the former Synchrophasotron. The features of the Booster, its main systems, their parameters and current status are presented in this paper.
|
|
|
Slides FRCAMH05 [16.830 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
FRCAMH07 |
NICA Collider Lattice Optimization |
166 |
|
- O.S. Kozlov, A.V. Butenko, H.G. Khodzhibagiyan, S.A. Kostromin, I.N. Meshkov, A.O. Sidorin, E. Syresin, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
|
|
|
The Nuclotron-based Ion Collider fAcility (NICA) - accelerator complex is being constructed at JINR. It is aimed to the collider experiments with ions and protons and has to provide the ion-ion (Au+79) and ion-proton collision in the energy range of 1-4.5 GeV/amu and also polarized proton-proton and deuteron-deuteron collisions. Each of two collider ring has a racetrack shape with two bending arcs and two long straight sections. Beams are separated in vertical plane and come into collisions in two IPs. Dynamic aperture of the NICA collider has been studied for different parameters of the optics at IP. Effects of the fringe fields of structural elements are considered in the optimization of the collider lattice.
|
|
|
Slides FRCAMH07 [4.547 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPSA028 |
QWR resonator Cavities Electrodynamics Simulations for new Nuclotron-NICA Injector |
273 |
|
- M. Gusarova, T. Kulevoy, M.V. Lalayan, S.M. Polozov, N.P. Sobenin, D.V. Surkov, S.A. Terekhov, S.E. Toporkov, V. Zvyagintsev
MEPhI, Moscow, Russia
- A.V. Butenko, A.O. Sidorin, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
- V. Zvyagintsev
TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
|
|
|
New linac-injector for Nuclotron-NICA is planned to consist of quarter-wave coaxial cavities (QWR) having velocities of ~0.07c and ~0.12c (beam energy from 5 to 17 MeV). These cavities are to be superconducting and operating at 162 MHz. Current results of the QWR cavities electrodynamics simulations and geometry optimizations are presented.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPSB037 |
Beam Transfer From Heavy-Ion Linear Accelerator HILAC Into Booster of NICA Accelerator Complex |
443 |
|
- A. Tuzikov, A.V. Butenko, A.A. Fateev, S.Yu. Kolesnikov, I.N. Meshkov, V.A. Mikhaylov, V.S. Shvetsov, A.O. Sidorin, A.I. Sidorov, G.V. Trubnikov, V. Volkov
JINR, Dubna, Moscow Region, Russia
|
|
|
Designs of systems of ion beam transfer from the linear accelerator HILAC into the Booster of the NICA accelerator complex (JINR, Dubna) including the transport beam line HILAC-Booster and the beam injection system of the Booster are considered in the report. The proposed systems provide multivariant injection for accumulation of beams in the Booster with required intensity. Special attention is paid to various aspects of beam dynamics during its transfer. Main methods of beam injection into the Booster are described. These are single-turn, multiturn and multiple injection ones. Results of beam dynamics simulations are presented. Status of technical design and manufacturing of the systems' equipment is also highlighted.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPSC041 |
New Superconducting Linac Injector Project for Nuclotron-Nica: Current Results |
626 |
|
- S.M. Polozov, M. Gusarova, T. Kulevoy, M.V. Lalayan, A.V. Samoshin, S.E. Toporkov, V. Zvyagintsev
MEPhI, Moscow, Russia
- M.A. Baturitski, S.A. Maksimenko
INP BSU, Minsk, Belarus
- A.V. Butenko, A.O. Sidorin, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
- A.A. Marysheva, V.S. Petrakovsky, I.L. Pobol, A.I. Pokrovsky, D.A. Shparla, S.V. Yurevich
Physical-Technical Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
- V. Zvyagintsev
TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
|
|
|
The joint collaboration of JINR, NRNU MEPhI, INP BSU, PTI NASB, BSUIR and SPMRC NASB started in 2015 a new project on the development of superconducting cavities production and test technologies and new linac-injector design. This linac intend for the protons acceleration up to25 MeV (up to 50 MeV after upgrade) and light ions acceleration up to ~7.5 MeV/u for Nuclotron-NICA injection. Current status of linac general design and results of the beam dynamics simulation and SRF technology development are presented in this report.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
FRCAMH02 |
Commissioning of New Light Ion RFQ Linac and First Nuclotron Run with New Injector |
153 |
|
- A.V. Butenko, A.M. Bazanov, D.E. Donets, A.D. Kovalenko, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.V. Mialkovskiy, D.O. Ponkin, R.G. Pushkar, V.V. Seleznev, K.V. Shevchenko, I.V. Shirikov, A.O. Sidorin
JINR/VBLHEP, Dubna, Moscow region, Russia
- S.V. Barabin, A.V. Kozlov, G. Kropachev, T. Kulevoy, V.G. Kuzmichev
ITEP, Moscow, Russia
- A. Belov
RAS/INR, Moscow, Russia
- V.V. Fimushkin, B.V. Golovenskiy, A. Govorov, V. Kobets, V.A. Monchinsky, A.V. Smirnov, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
- S.M. Polozov
MEPhI, Moscow, Russia
|
|
|
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR, Dubna. This complex is assumed to operate using two injectors: the Alvarez-type linac LU-20 as injector of light ions, polarized protons and deuterons and a new linac HILAc - injector of heavy ions beams. Old HV for-injector of the LU-20, which operated from 1974, is replaced by the new RFQ accelerator, which was commissioned in spring 2016. The first Nuclotron technological run with new fore-injector was performed in June 2016. Beams of D+ and H2+ were successfully injected and accelerated in the Nuclotron ring. Main results of the RFQ commissioning and the first Nuclotron run with new for-injector is discussed in this paper.
|
|
|
Slides FRCAMH02 [30.140 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
FRCAMH03 |
Commissioning of the New Heavy Ion Linac at the NICA Project |
156 |
|
- A.V. Butenko, A.M. Bazanov, D.E. Donets, A.D. Kovalenko, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.V. Mialkovskiy, V.V. Seleznev, K.V. Shevchenko, I.V. Shirikov, A.O. Sidorin
JINR/VBLHEP, Dubna, Moscow region, Russia
- B.V. Golovenskiy, A. Govorov, V. Kobets, V.A. Monchinsky, A.V. Smirnov, E. Syresin, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
- H. Hoeltermann, H. Podlech, U. Ratzinger, A. Schempp
BEVATECH, Frankfurt, Germany
- D.A. Liakin
ITEP, Moscow, Russia
|
|
|
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is now under development and construction at JINR, Dubna. This complex is assumed to operate using two injectors: modernized old Alvarez-type linac LU-20 as injector of light polarized ions and a new Heavy Ion Linear Accelerator HILAc - injector of heavy ions beams. The new heavy ion linac accelerate ions with q/A values above 0.16 to 3.2 MeV/u is under commissioning. The main components are 4-Rod-RFQ and two IH - drift tube cavities is operated at 100.6 MHz. Main results of the HILAc commissioning with carbon beam from the laser ion source are discussed.
|
|
|
Slides FRCAMH03 [14.452 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPSB024 |
Program Complex for Modeling of the Beam Transverse Dynamics and Orbit Correction in Nuclotron, LHEP JINR |
414 |
|
- I.V. Antropov, V.O. Khomutova, V.A. Kozynchenko, D.A. Ovsyannikov, A.O. Sidorin, G.V. Trubnikov
Saint Petersburg State University, Saint Petersburg, Russia
- I.L. Avvakumova, A.O. Sidorin, G.V. Trubnikov
JINR/VBLHEP, Dubna, Moscow region, Russia
- O.S. Kozlov, V.A. Mikhaylov
JINR, Dubna, Moscow Region, Russia
|
|
|
Program complex for modelling of transverse dynamic of particle beams and orbit correction at Nuclotron synchrotron (LHEP JINR) is considered in current work. The program complex provides calculation of transverse dynamic of charged particle beams in Nuclotron and its axis, based on linear model with transport matrix of lattice elements, calculation of Nuclotron Twiss parameters, acceptance and emittance of the beam. A possibility to optimize the location of beam position monitors (pick-up) and multipole correctors is foreseen as well as calculation of the orbit with measuring data of pick-up stations of Nuclotron. Program complex includes realizations of orbit correction algorithms with response matrix and provides correction of the orbit in Nuclotron. User's graphic interface provides interaction of user with program complex, including performance on demand of the user of separate functions of the program complex, providing input and maintenance of parameters, download from file and record into the file of parameters and calculation results, graphical view of the calculations results in program complex. Program software environment is integrated with MAD-X program (upload, processing of data to and from, visualization). Format of input and output data is compatible with relevant MAD-X format.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPSB041 |
Stochastic Cooling System at NICA Project |
455 |
|
- I.V. Gorelyshev, A.O. Sidorin
JINR/VBLHEP, Dubna, Moscow region, Russia
- N. Shurkhno, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
|
|
|
Stochastic cooling system is one of the crucial elements for luminosity preservation at NICA accelerator-collider complex. The foundation of main parameters of the stochastic cooling system is provided. The preparatory experimental work for longitudinal stochastic cooling was performed at Nuclotron accelerator. The description of Nuclotron system components, adjustment algorithms and remote control is given.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPSC056 |
Proposal to Symmetric Quench Detection at Superconducting Elements by Bridge Scheme Usage |
662 |
|
- E.V. Ivanov
JINR, Dubna, Moscow Region, Russia
- A.O. Sidorin, A.L. Svetov
JINR/VBLHEP, Dubna, Moscow region, Russia
|
|
|
In the frame of the NICA project two new superconducting accelerators will be constructed - the Booster and the NICA collider. Specialized facility for manufacturing and testing of the SC magnets for the NICA and FAIR projects is under development at JINR. Proposal to quench detection system for these and similar facilities is described in this paper.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|