Author: Zubets, V.
Paper Title Page
THCE01 INR RAS Linac Proton Injector 100 Hz PRR Operation Mode 306
 
  • A. Belov, O.T. Frolov, L.P. Nechaeva, E.S. Nikulin, A.V. Turbabin, V. Zubets
    RAS/INR, Moscow, Russia
 
  The injector provides INR RAS linac by proton beam with energy 400 keV, 200 mks pulse duration at pulse repetition rate 50 Hz. PRR of the proton injector has been increased to 100 Hz with goal of rising the accelerator average beam current. Main stages and results of the injector modernization are presented.  
slides icon Slides THCE01 [3.518 MB]  
 
THPSC44 Development of Remote Control System for H-minus Ions Source of INR LINAC 423
 
  • V.S. Klenov, Yu.V. Kiselev, O. Volodkevich, V. Zubets
    RAS/INR, Moscow, Russia
 
  A system of remote control of surface –plasma source of negative ions for INR RAS LINAC was designed, constructed and put into operation. The INR LINAC negative ions injector is based on the accelerating tube at energy of 400 keV and surface –plasma source of negative ions. Galvanic isolation and spatial separation of elements that are at potential 400 kV in the power rack of the ion source and the host computer are carried out by means of fiber-optic USB-interface extender from firms Icron. A set of multifunctional units from National Instruments allows to monitor the oscilloscope signals with up to 50 Ms/s and to control the ions source power settings. The data acquisition devices programming performed in a LabView graphical environment. Algorithm and LabVew code for fast and safe "conditioning" of the ion source discharge gap and extractor gap from arcing and breakdowns were developed.  
 
FRCA02 Time Dependence of Ion Beam Transverse Phase-Space Portrait Orientation During Linac Proton Injector Pulse 459
 
  • O.T. Frolov, A. Belov, S.E. Golubovskiy, E.S. Nikulin, V. Zubets
    RAS/INR, Moscow, Russia
 
  As a result of analysis conducted a transients of the 400 kV column intermediate electrode potential have been determined as one of the main processes responsible for change of beam phase-space portrait orientation during 200 mks, 50 Hz proton injector high voltage accelerating pulse. Beam transport simulation shows high sensitivity of the beam phase-space portrait orientation to variation of the intermediate electrode potential. It has been found that significant variation of this potential takes place due to transition process during a pulse in the capacitor-resistor voltage water divider of the accelerating tube. The divider capacities matching procedure has been performed. The beam emittance measurements results have shown that within the accuracy of observation the beam transverse phase-space portrait orientation remains constant during injector pulse with the accelerating tube voltage divider being compensated.  
slides icon Slides FRCA02 [0.824 MB]