A   B   C   D   E   F   G   H   I   K   L   M   P   Q   R   S   T   U   V  


Paper Title Other Keywords Page
WEZ03 A configurable Interlock System for RF Stations at XFEL controls, site, diagnostics, power-supply 159
  • M. Penno, W. Köhler, H. Leich, B. Petrosyan, G. Trowitzsch, R. W. Wenndorff
    DESY Zeuthen, Zeuthen
  • S. Choroba, T. Grevsmühl
    DESY, Hamburg
  The interlock system prevents any damage from the cost expensive components of the RF station. The system monitors various system components, computes the status in-formation in realtime and reports actual status to the control system. The system is designed for maximum reliability and max. time of operation. It includes self diagnostic and modular repair strategies. The interlock incorporates a controller and slave modules that perform the I/O opera-tion. They are connected to distribution panels that supply flexible interfaces to exter-nal components. The interlock logic is implemented in hardware and operates independ from the proc-essor and the software. The software accomplishes the hardware selftest on system startup. Further applications provide communication interfaces over Ethernet used by administration and the controlsystem. A runtime software integrity selftest strategy has been implemented for high reliability. It covers detection of stack overflows, thread deadlocks, memory corruption and is able to recover the system without inter-rupting interlock operation. The interlock system performs well its task at FLASH (DESY, Hamburg Site) and at PITZ (DESY, Zeuthen Site).  
slides icon Slides  
WEZ04 Using the Advanced Telecom Computing Architecture xTCA as Crate Standard for XFEL controls, monitoring, diagnostics, linear-collider 162
  • O. Hensler, G. Petrosyan, L. M. Petrosyan, V. Petrosyan, K. Rehlich, P. Vetrov
    DESY, Hamburg
  At XFEL it is planned to install most electronic components and computers for LLRF, diagnostics and controls inside the tunnel. Access to these devices during the XFEL operation will not be possible. Remote control and monitoring of all relevant parameters of the shelfs/crates and the computers must be ensured and should be done in a standardised way. In addition software downloads and debugging up to the FPGA level should be provided, even if an operating system crashes e.g. due to radiation, maintenance functionality must be available. An introduction to xTCA will be given, the reasons to change the crate standard from a VME to a xTCA based system and the experience with this new electronics standard will be described.  
slides icon Slides