

Using the Advanced Telecom Computing Architecture xTCA as crate standard for XFEL

O. Hensler – DESY MCS

Work done by: A. Aghababyan, G. Petrosyan, L. Petrosyan, V. Petrosyan, P. Smirnov, P. Vetrov

22. Oct. 2008 PCaPAC Olaf Hensler DESY-MCS

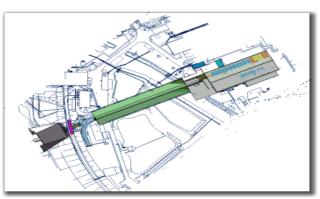
HELMHOLTZ | gemeinschaft

Olaf Hensler DESY – MCS

Olaf.Hensler@desy.de

Working in the controls group for FLASH and XFEL

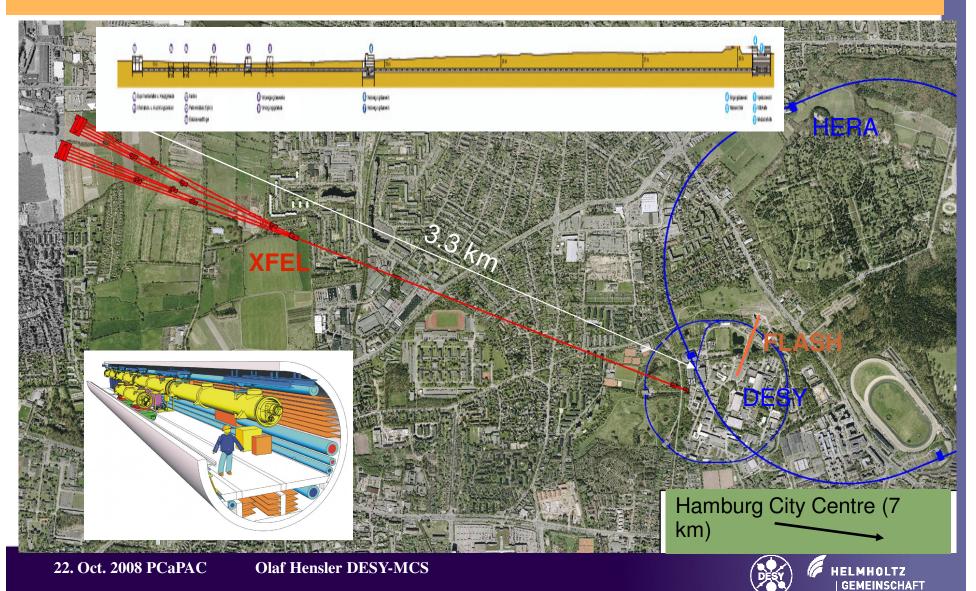
22. Oct. 2008 PCaPAC Olaf Hensler DESY-MCS



FLASH

- Linac is 280 m long
- up to 1GeV energy => ~6nm Photon beam

The European X-Ray Laser Project


- 2.5 kA peak current
- 5 Kryo Modules with eight 9-cell cavities
- 4 Klystrons to drive Gun and Modules
- VUV FEL light down to 6nm wavelength
- Undulator length is almost 30 m
- shared between Users, XFEL and ILC
- Prototype for XFEL and ILC

X-Ray Free Electron Laser (XFEL)

The European X-Ray Laser Project

X-ray Free Electron Laser

- an European project at DESY
- Linac will 1500 m long
- up to 25 GeV energy
- ~100 Kryo Modules with eight 9-cell cavities each
- I Klystrons to drive 4 Modules
- 1.3 GHz operation
- XFEL photon beam down to 0.1 nm
- German government announced to spend 50% of the budget == ~350 Mio Euro
- start of civil engineering in 2009

DOOCS features

- <u>D</u>istributed <u>O</u>bject <u>O</u>riented <u>C</u>ontrol <u>System</u>
- Client / Server system with ONC-RPC
- Implemented mainly in C++
- Local HDD for archiving and configuration
- Every server has its local .conf and .log file
- Hierarchical name space
- Name calls -> query all locations or properties
- Most source of a server is inside a central C++ library
- No central DataBase
- For Solaris, Linux and Windows

http://doocs.desy.de

DOOCS features con,t

- Tight connection to the DOOCS DAQ Poster : TUP010
- A common client C++ API for
- DOOCS ONC-RPC
- 🕳 TINE
- EPICS
- On top of this API
- DOOCS Data Display DDD
- Generic Applications and command line tools
- MatLab
- LabView

DOOCS features con,t

- Native Java API : jDOOCS
 - talking to : DOOCS, TINE, Tango, (Epics planned)
- On top of this API
 - 🕳 jDDD
 - Alarm & Info System
 - jDTool (generic access)

- ~300 Crates are required inside XFEL
- We want a manageable and reliable system
- Find today a solution with support for the next 10 years
 - Cheaper solution as VME
 - Common Hardware and Software standards for all subsystems
 - Is xTCA the right platform for XFEL?

The European X-Ray <u>Laser Project</u>

Why crates at all ?

- 10 Hz operation at XFEL
- single bunch resolution over the whole macropulse
- very fast analog channels
- about 130 analog I/O channels per RF station
- short cables to the diagnostics devices
- remote management

Evaluation of ATCA and µTCA

- Trying crates and modules from different manufacturers
 - → Is it a 'standard' ?
 - Learn to specify a big system

Design of hardware (AMC)

- Can one understand and implement the specs?
 - Is the analog (ADC) performance sufficient?

Design of software

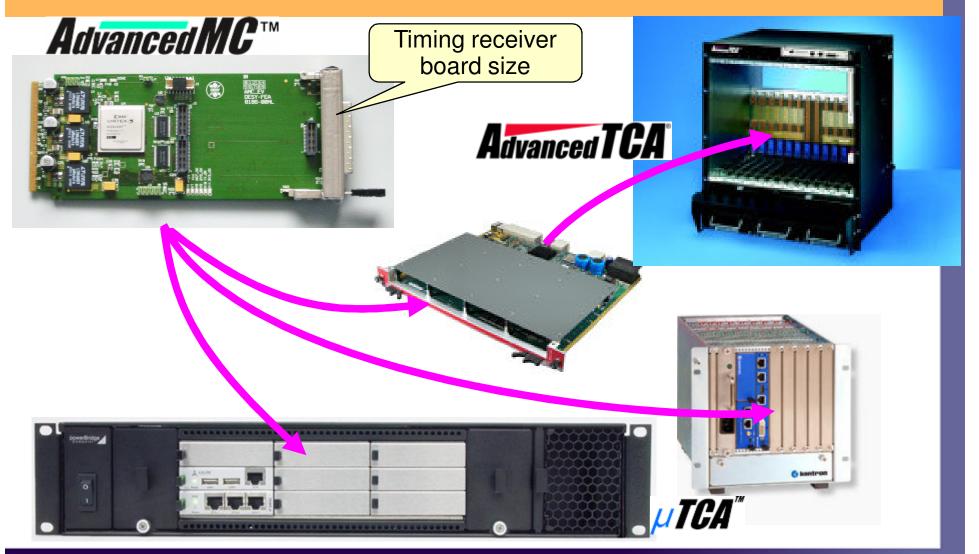
- FPGA connection by PCIe
- Device drivers for LINUX and Solaris
 - IPMI code for the MMC
 - System management

ATCA evaluation by the XFEL LLRF group

22. Oct. 2008 PCaPAC

Olaf Hensler DESY-MCS

HELMHOLTZ | GEMEINSCHAFT


ATCA features

- ATCA == Advanced Telecom Computer Architecture
 - serial, switched bus (GB Enet, PCI-x)
 - redundant, monitored -48V powersupply
 - standardized monitoring and management (IPMI)
 - complete redundant setup possible
 - no IO from industry yet
 - too expensive for now

Hardware: xTCA

HELMHOLTZ

Future Shelfs : ATCA

Olaf Hensler DESY-MCS

0

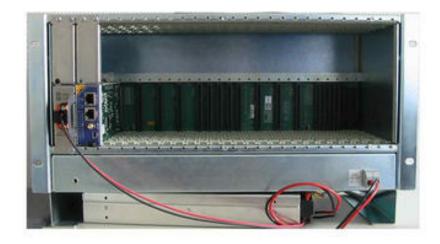
02

HELMHOLTZ | GEMEINSCHAFT

22. Oct. 2008 PCaPAC

µTCA shelf

12 slot


8 slot low cost active backplane

4 slot

double size: 12 slot

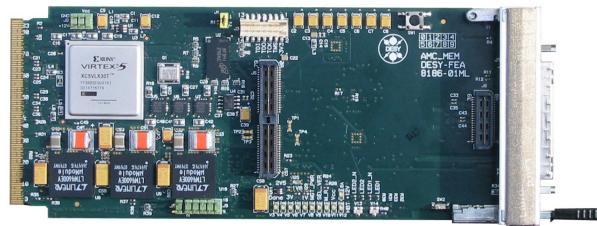
6 slot



standard AMC's

IP carrier to connect e.g. legacy FLASH timing

A solution to connect IO to µTCA


ADC: 8 channel 100 MHz 14 bit, design contract with Tews

DESY AMC

Olaf Hensler DESY-MCS

- Development of an 'universal' AMC module
- Hardware design with Virtex5 and 256MB DDR2 SRAM (1GB/s)
- FPGA code development with PCI Express interface and DMA
 - 370 MB/s into user space (128byte payload size)
 - DOOCS server and OS driver
 - IPMI code for 'Module Management Controller' (Atmega-128)

Piggyback with 2 ADC and 2 DAC channels, 100MHz

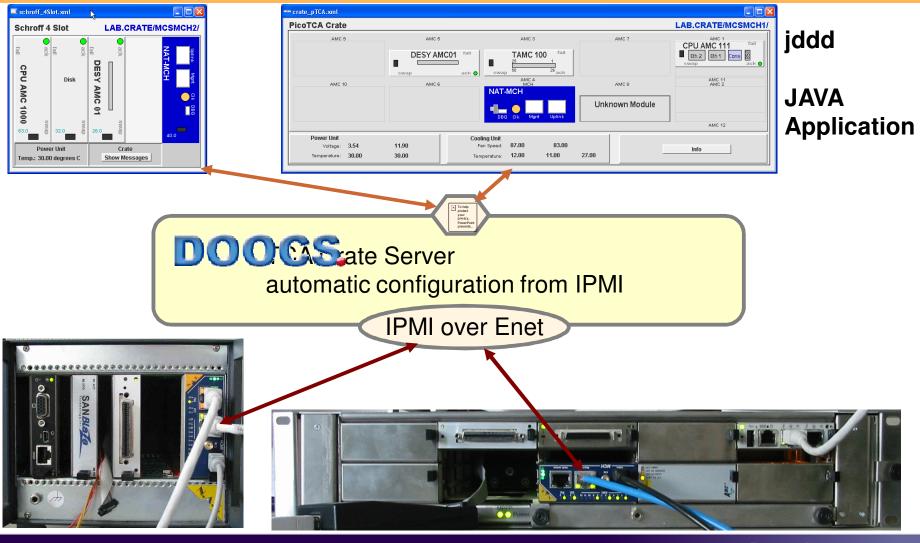
22. Oct. 2008 PCaPAC

HELMHOLTZ

IPMI for DESY AMC Board

- IMPI code on Atmel-128
 - Implements version 1.5 functions
- FPGA code loading in preparation
- IPMI control system integration
- DOOCS server for ATCA, µTCA and computers
 - IPMI communication via Ethernet to the crates
 - Extracts from IPMI the available information
 - Creates a dynamic list of AMC modules
 - Creates a dynamic list of sensors
- Archives values and provides reset/boot commands to FPGAs or CPUs

Required configuration: one entry per crate (IP name)


22. Oct. 2008 PCaPAC

Olaf Hensler DESY-MCS

DOOCS integration

Olaf Hensler DESY-MCS

HELMHOLTZ | Gemeinschaft

FLASH Timer Server

DOOCS integration

2 Mhz Sine wave sampled with 100 MHz

LAB.TEST/TAMC900/TAMC1.0/ADCC - D × TTF Timer: MCP1 Ch # On/Off Event # Div. P-Width Delay/ms Pre Scale Description E 3 LAB.TEST/TAMC900/TAMC1.0/ADC01.TD +3.1110 **H** NO EN 770NS MCP 1-4 trigger 4. 9MHz/ 1 2 4 9 A6 + 3.1097 H N1 EN 770NS Flash Lampe trigger Η DI CO BI AO 2.5-FF F FF FF 444 444A + 3.1109 1.5-N2 EN 770NS MCP 5 trigger 000 A6 0.5 ----MSK N3 EN 770NS + 6.5654 H ADC_server SIGUSR1 Η FLAG TITITITI -0.5 4444 AAAA N4 EN + 55.4540 📕 770NS -1.5 B7 EVENT: 250F215 + 65.0000 -2.5 N5 EN ADC SERVER SIGUSR2 770NS 199 ms: -3.5 444 A44 N6 EN + 3.1158 ICCD trig. SFPD (R.T. 770NS SIGUSR1 -4.5 <u>a n na [a n na] na na [na na] na n na [</u> A6 ÷.3.1164 Ш 0. 50. 100. 150. 200. 250 300 NZ EN 770NS Scope trig. SFPD (R.T CLOCK Res= 1, Buf= [] DOOCS. DOQCServer **FLASH** Timer Server Running on AMC CPU **ADC data via PCI Express** PA PA BERTS PATATA 00 6

The European X-Ray Laser Project_{X-Ray} Free-Electron Lase

Experience (Problems)

Modules are not enabled if IPMI returns wrong stuff

e.g. protocol version 1.0 string (instead of 1.5 or 2.0)

Payload Power MUST be switchable

Otherwise: MCH init and CPU booting conflict

Fan speed control important

Especial for development crates on a desk

Backplane configuration not standard

MCH, CPU and backplane must fit together

CPU should have network (PXE) boot feature

- Important for large installations
- PCB with traces too close to the edge can be destroyed
- Dynamic configuration of PCle
 - OS driver handling; board with one lane was seen by CPU with 4 lanes

Experience (Pros)

Management of crates is well defined

- Dynamic module and crate info
- Gives all relevant info
- Fast data transfers (>400MB/s on 4 lanes PCIe)

Hot-swap

- hardware is controlled by the MCH great!
- software reconfiguration of OS PCIe drivers to be done
- Good decoupling of modules on the backplane
- Good analog performance

Thank you

