A   B   C   D   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Mexner, W.

Paper Title Page
TUX02 Experiences with PVSS II as an Overall SCADA System for ANKA 46
  • W. Mexner, K. Cerff, M. Hagelstein, T. Spangenberg
    FZK, Karlsruhe
  The control system of the synchrotron radiation source ANKA at Forschungszentrum Karlsruhe was segmented into several autonomous parts. The storage ring have been controlled by the ACS control system, the infrastructure facilities by the supervisory control and data acquisition system (SCADA) named IGSS, and several autonomous PLC based interlock systems for the accelerators and beam lines. Each system required special knowledge for maintenance and failure diagnostics. In order to improve the manageability and to reduce cost, the SCADA system PVSS II has been chosen as a supervisory control system, integrating each of the individual parts. As the interface is open and easy to handle the integration was straightforward. The majority of the existing control systems have been integrated with limited man power during a one year period followed by a continuous optimization process. The new system with a common look and feel for beam lines and machine was quickly accepted by beam line scientists, technicians and operators.  
slides icon Slides  
TUP003 A Modular Control System Based on ACS for Present and Future ANKA Insertion Devices 82
  • K. Cerff, M. Hagelstein, W. Mexner, T. Spangenberg
    FZK, Karlsruhe
  At the 2.5 GeV synchrotron facility ANKA, Forschungszentrum Karlsruhe, Germany, the Insertion Device group pioneered the development of superconductive undulators and was the first worldwide to test them with beam. The actual control system for this SCU14 prototype is based on industrial standard software and was up to now not embedded to the communication layer of ANKA Control System (ACS) and not to the ANKA Supervisory Control and Data Acquisition (SCADA) control system, PVSSII. The paper describes the implementation of a modular control system structure, based on object oriented (OO) technologies, including all the devices of existent and future ANKA-IDs. As a second topic the hardware solution, based on Cosylabs MIOC, to interface undulator motion control of gaps and scrapers, main power supply, corrector power supplies, temperature control and Interlocks is described. The integration of the housekeeping functions, cooling, vacuum control and Interlocks to PVSSII and their communication with ACS are discussed.  
poster icon Poster