A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Marks, S.

Paper Title Page
MOPAS025 Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System 488
 
  • S. Marks, K. Kennedy, D. W. Plate, D. Schlueter, M. S. Zisman
    LBNL, Berkeley, California
 
  Funding: U. S. Department of Energy, Contract No. DE-AC02-05CH11231.

The positron and electron damping rings for the ILC (International Linear Collider) will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR-C superconducting design* . There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC RDR. Particular emphasis will be placed on photon power load calculations and the absorber design.

* A. Mihailichenko, Optimized Wiggler Magnet for CESR, Proceedings of PAC2001, Chicago, Il, June 18-22, 2001

 
TUPMN111 A Low Emittance Lattice for the Advanced Light Source 1170
 
  • H. Nishimura, S. Marks, D. Robin, D. Schlueter, C. Steier, W. Wan
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

The possibility exists of achieving significantly lower emittances in an electron storage ring by increasing its horizontal betatron tune. However, existing magnet locations and strengths in a given ring may be inadequate to implement such an operational mode. For example, the ALS storage ring could lower its emittance to one third of the current value by increasing the horizontal tune from 14.25 to 16.25. However, this would come with the cost of large chromaticities that could not be corrected with our existing sextupole magnets. We discuss such operational issues and possible options in this paper.

 
TUPMS002 Successful Completion of the Femtosecond Slicing Upgrade at the ALS 1194
 
  • C. Steier, P. A. Heimann, S. Marks, D. Robin, R. W. Schoenlein, W. Wan
    LBNL, Berkeley, California
  • W. Wittmer
    SLAC, Menlo Park, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

An upgraded femtosecond slicing facility has been commissioned successfully at the Advanced Light Source. In contrast to the original facility at the ALS which pioneered the concept, the new beamline uses an undulator (the first in-vacuum undulator at the ALS) as the radiator producing the user photon beam. To spatially separate the femtosecond slices in the radiator, a local vertical dispersion bump produced with 12 skew quadrupoles is used. The facility was successfully commissioned during the last 1.5 years and is now used in routine operation.

 
TUPMS003 Status of the Top-off Upgrade of the ALS 1197
 
  • C. Steier, B. J. Bailey, K. M. Baptiste, W. Barry, A. Biocca, W. E. Byrne, M. J. Chin, R. J. Donahue, R. M. Duarte, M. P. Fahmie, J. Gath, S. R. Jacobson, J. Julian, J.-Y. Jung, S. Kwiatkowski, S. Marks, R. S. Mueller, H. Nishimura, J. W. ONeill, S. Prestemon, D. Robin, S. L. Rossi, F. Sannibale, T. Scarvie, D. Schlueter, D. Shuman, G. D. Stover, CA. Timossi, T. Warwick, J. M. Weber, E. C. Williams
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Advanced Light Source is currently being upgraded for top-off operation. This major facility upgrade will provide an improvement in brightness from soft x-ray undulators of about one order of magnitude and keep the ALS competitive with the newest intermediate energy light sources. Major components of the upgrade include making the booster synchrotron capable of full energy operation, radiation safety studies, improvements to interlocks and collimation systems, diagnostics upgrades as well as emittance improvements in the main storage ring. The project status will be discussed as well as results of major parts of the commissioning.

 
FRYKI03 New Developments in Light Source Magnet Design 3751
 
  • S. Prestemon, S. Marks, D. Schlueter
    LBNL, Berkeley, California
 
  The rapid growth in the light source community throughout the world has served to motivate innovation in the magnet technologies that serve as the foundations for both the storage ring lattice magnet systems and the primary radiation sources, the insertion devices. Here a sampling of magnet system developments being pursued at diverse facilities are discussed, including combined-function magnets that minimize space requirements and improve accelerator performance, high performance bend magnets that provide enhanced radiation characteristics, and novel and untested concepts for future lattice magnets. Finally, we review developments in insertion devices that promise new performance characteristics to better serve the light source community.  
slides icon Slides