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Introduction

� Developments in light source magnet design are 
occurring on a number of fronts:
� Lattice magnets 

� Combined function designs

� Permanent magnet systems

� Superconducting magnet systems

� Kicker magnets (single-bunch….)

� Insertion devices
� Novel spectral characteristics

� Dynamic multipole compensation

� Cryogenic permanent magnet

� Superconducting (planar and variable polarization)

Some discussion here…

And more 

discussion 

here…
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Lattice magnet developments

� Trend is to optimally combine magnet functions:

� reduce space requirements of lattice magnets 

� Improve overall efficiency

� Minimize overall magnet cost

� Industry has provided cost effective solutions:

� Examples – Soleil (Paris), Canadian Light Source, Australian 

Light Source, etc

� Improvements in machining and fabrication tolerances, 

measurement and quality control capabilities
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ALS Superbends

� Stronger field, shorter length:

� Higher critical photon energy –

key for hard x-ray research

� Three-fold symmetry at ALS

� First operation of super-

conducting lattice magnet on a 

3rd generation ring

� Operating since 2001

� Excellent operational record
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Fig. 1.  Superbend cold mass assembly: 1 – superconducting coils

with steel poles, 2 – laminated steel yoke, 3 – suspension straps, 4 –

LHe vessel, 5 – LN2 vessel, 6 – HTS leads, 7 – cryocooler, 8 – 50

K thermal connection, 9 – 4 K thermal connection, 10- cooldown

tube, 11 – warmup heater.

J. Zbasnik, et al., "ALS Superbend Magnet 

System", IEEE Transactions on Applied 

Superconductivity, vol. 11, No. 1, pp 2531-2534, 

March 2001.
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Example of combined function magnet

� ALS sextupole

� “Traditional” sextupole with additional capabilities:

� Vertical steering 

� Horizontal steering

� Skew quadrupole

� Designed using Halbach perturbation theory

� Similar concept used in Soleil sextupoles

� MaxLab proposes combined multipole magnets for the 
MAX IV lattice (quadrupoles with sextupole and 
possibly octupole content)

� May serve as a template for future light source lattice designs

S. Marks, “Magnetic Design of Trim Excitations for the 

Advanced Light Source Storage Ring Sextupole”, IEEE 

Transaction on Magnetics, Vol. 32, No. 4. 
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Permanent magnets for lattice functions

� The trend in Light Sources is towards full-energy 
injection and in many cases top-off injection
� Can consider “unconventional” approaches

� Permanent magnets for the lattice!?
� Idea not new:

� “Workshop on Permanent Magnet Storage Rings”, LBL, 1994

� Used for antiproton storage rings (Fermilab recycler)

� Advantages
� Significant reduction in infrastructure (water, power,…)

� Stable operation – no beam loss due to power outage (motivation for e+

ring)

� May provide enhanced performance if apertures can be made small

� Issues:
� Radiation damage mitigation

� Field control (perturbation level)

� Field error mitigation
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ALS Permanent magnet chicane

� The ALS now uses a pure 

permanent magnet for the chicanes

� No hysteresis

� Control of multipoles – excellent 

combined-function capabilities

� Scalable strength, built-in capability 

for fabrication and installation error 

compensation

m =1 

m =0 

m =2 

m =3 

m =4 
m =5 

Concept proposed in: R. Schlueter et 

al, NIM Phys Res. A, Vol 395, 1997
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Insertion device developments

� Excellent review by J. Chavanne and P. Elleaume, EPAC 

2006

� Recent workshop on ID developments, sponsored by B. 

Diviacco, ELETTRA (Nov. 2006)

� Progress on devices with novel spectral properties

� Dynamic multipole compensation

� Research on FEL application-specific issues

� New results in cryogenic in-vacuum permanent magnet development

� New results in superconducting insertion devices – planar and 

variable polarization
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Devices with novel spectral properties

� Variable polarization devices are becoming the ID of 

choice for soft x-ray applications

� Also becoming more common on high-energy rings

� Some companies developing fabrication expertise

� Quasi-periodic capabilities are intriguing

� Reduced perturbation of energy states by harmonics 

transmitted through the monochrometer

� Can be implemented on variable polarization devices as 

well
-S. Hashimoto and S. Sasaki, JAERI-M Report 94-055 (1994).

-S. Sasaki, S. Hashimoto, H. Kobayashi, M. Takao and Y. Miyahara, in Proc. of Inter. 

Conf. of Synchrotron Radiation Instrumentation ’94, New York, U.S.A., 1994.
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Quasi-periodicity

� Idea: Interlace two periodic devices

� Modification: interlace two devices with same 

period, different field strength

Planar:

-B. Diviacco et al, EPAC 1998; 

-J. Chavanne et al, EPAC 1998

EPU: 

B. Diviacco, APS Workshop, 2002
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EPU accelerator issue: Dynamic multipoles

� Vertical focusing of planar insertion devices is well-known

� Emanates from fz~vxBz off-axis

� Can be compensated using lattice and/or corrector quadrupoles

� For EPU’s:

� varying field configurations result in focusing 

properties that vary with phase shift (i.e. 

polarization mode)

� fast field roll-off results in nonlinear focus/defocus 

properties

� Noted and evaluated by P. Elleaume et al; detailed 

solution tested/implemented by J. Bahrdt et al., I. 

Blomquist, B. Diviacco,…
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Example: ALS EPU’s

� ALS has three 50mm 
period APPLE II’s

� One 90mm device will 
soon be installed 
(MERLIN)

� Top-Off will require 
dynamic multipole
correction for reasonable 
injection efficiency
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Uncorrected EPU90

Linear defocusing region limited
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Solution: addition of magnetic correctors

� Magnetic material, correctly dimensioned and 

located on the different quadrants, can 

partially compensate the nonlinear effect
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Idea originally proposed by J. Chavanne and P. Elleaume
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Impact of magnetic corrections

� Calculations suggest dynamic aperture is 

recovered in most polarization modes for the 

ALS (C. Steier et al., EPAC 2006)
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Developments in novel insertion 

devices

� CIVID developments

� Superconducting undulators

� Planar

� Variable polarization

Nice review of progress can be found at http://www.elettra.trieste.it/UM14/
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Cryogenic permanent magnet R&D
� Main groups: SPring8, ESRF, Brookhaven

� Some industrial efforts (e.g. ADC)

� Prototypes have been built and tested

� No prototypes have used higher remanance material

� Motivation:

� Increase in Remanance by as 

much as ~12%

� Increase in Coercivity allows 

use of higher remanance

material

=>Theoretical increase of ~30% -

motivates research

T. Tanaka, New Frontiers in ID’s, 

ELETTRA, Nov. 2006
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CIVID Issues

� Key concerns:
� Phase error correction: does room temperature correction 

apply at cryogenic temperatures?
� Tentative data from SPring-8: yes

� Awaiting ESRF confirmation measurements

� Can enhanced coercivity be leveraged? 
� Cannot bake-out devices! Will devices “Cryopump” at 150K? 

Can sufficient pumping be provided without baking?

� Note: enhanced coercivity may nevertheless be 
useful for applications where demagnetization due to 
thermal / radiation loads is a concern 
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Superconducting insertion devices
� Many superconducting wigglers are being installed  (Canadian Light Source, 

Brazilian Light Source,…; ALBA planning SC wiggler)

� ANKA has detailed performance data for first NbTi undulator
� First spectral data (Rossmanith, ASC 2006)

� Thermal load measurements

� EU funded collaboration (ANKA, MAXLAB, ESRF, ELETTRA) (Rossmanith, 
New Frontiers in ID’s, ELETTRA, Nov. 2006)
� Cryogenic systems

� Magnet measurements

� ANKA proceeding with procurement of a second superconducting undulator; 
considering Nb3Sn long-term

� LBL: successful test of a Nb3Sn prototype

� APS: continuing Nb3Sn research following collaboration with LBL

R&D issues: 1) Phase error correction 

2) Magnetic measurements of cold device

2) Calorimetry for beam-based heating

Excellent case for multi-

facility collaborative project!!
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LBL Superconducting undulator prototype
� Third LBL prototype – reached 

“short sample”

� Jeng=1760A/mm2

� 14.5mm period; would yield B~1.6T for 

a magnetic gap of 6mm
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Variable polarization superconducting undulators

� Multiple design concepts have been proposed

� Typically do not provide significant field enhancement over 
permanent magnet devices

� Advantages
� No moving parts 

� Possibly enhanced spectral control

� Possible enhanced spectral range (period doubling/halving)

� Disadvantages

� Superconductors not well-suited for rapid field (polarization) change 

� Phase-error correction and field measurement needs to be addressed
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Polarization control: LBL SC-EPU concept
Generating variable elliptic polarization

� Add a second 4-quadrant array of such coil-series, 
offset in z by λ/4 (coil series α and β)

� With the following constraints the eight currents are 
reduced to four independent degrees of freedom:
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A conceptual design for the SC-EPU
� Four-quadrant, iron-free design

� Performance limited by AC losses (dB/dt-induced heating) of coil

� Period halving/doubling requires “switchyard” – superconducting switch needs to be demonstrated
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  λ=28mm horiz. pol. SC-EPU
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Spectral range and Brightness of example SC-EPU 

λ=28mm device and PM-EPU λ=32mm 

Circular

λ linear polarization

2λ linear polarization

2λ

λ

Beam Parameters:

I=0.5A

βx/y=13.65 / 2.25m

εx/y=6.3 / 0.03nm

0.06 disp. in x

Energy spread not included

Limited by aperture
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Summary

� There are a wide variety of magnetic systems in light 
sources – here we only discussed a small subset

� There are “new” ideas being researched

� often new opportunities for “old” ideas, with renewed 
interest stemming from developments in neighboring 
fields

� We can expect more diverse systems in the future –
superconducting, permanent magnet, and 
“traditional” electromagnets designed to optimally 
address target applications


