A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kubo, K.

Paper Title Page
THPMN028 Development of the Strip-line Kicker System for ILC Damping Ring 2772
 
  • T. Naito, H. Hayano, K. Kubo, M. Kuriki, N. Terunuma, J. Urakawa
    KEK, Ibaraki
 
  The performance of the kicker system for the International Linear collider(ILC) is the one of the key component to determine the damping ring(DR) circumference and the train structure. The parameters are discussing at the baseline configuration design for the ILC. The bunch trains in the linac are 2820(5640) bunches with 308(154) ns spacing and the repetition rate is 5Hz. The bunch spacing in the DR is 6(3) ns. The kicker has to have fast rise and fall times of 6(3) ns and the repetition rate of 3.25(6.5) MHz. The development work of the kicker system using multiple strip-lines is carried out at KEK-ATF. The beam test result of the single unit is described. Also Experimental results on new scheme to improve the rise and fall times will be presented.  
THPMS013 Comparison of Tracking Codes for the International Linear Collider 3020
 
  • J. C. Smith
    CLASSE, Ithaca
  • P. Eliasson
    Uppsala University, Uppsala
  • K. Kubo
    KEK, Ibaraki
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Lebrun, K. Ranjan
    Fermilab, Batavia, Illinois
  • F. Poirier, N. J. Walker
    DESY, Hamburg
  • P. Tenenbaum
    SLAC, Menlo Park, California
 
  Funding: Supported by the US Department of Energy, the US National Science Foundation and the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area".

In an effort to compare beam dynamics and create a ‘‘benchmark'' for Dispersion Free Steering (DFS) a comparison was made between different International Linear Collider (ILC) simulation programs while performing DFS. This study consisted of three parts. First, a simple betatron oscillation was tracked through each code. Secondly, a set of component misalignments and corrector settings generated from one program was read into the other to confirm similar emittance dilution. Thirdly, given the same set of component misalignments DFS was performed independently in each program and the resulting emittance dilution was compared. Performance was found to agree exceptionally well in all three studies.

 
THOAC01 ATF Extraction Line Laser-Wire System 2636
 
  • L. Deacon, G. E. Boorman, L. Deacon
    Royal Holloway, University of London, Surrey
  • A. Aryshev, H. Hayano, K. Kubo, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • G. A. Blair, S. T. Boogert, A. Bosco, L. Corner, N. Delerue, F. Gannaway, D. F. Howell, V. Karataev, M. Newman, A. Reichold, R. Senanayake, R. Walczak
    JAI, Oxford
  • B. Foster
    OXFORDphysics, Oxford, Oxon
 
  Funding: PPARC LC-ABD Collaboration Royal Society Daiwa Foundation Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899

The ATF extraction line laser-wire (LW) aims to achieve a micron-scale laser spot size and to verify that micron-scale beam profile measurements can be performed at the International Linear Collider beam delivery system. Recent upgrades to the LW system are presented together with recent results including the first use of the LW as a beam diagnostic tool.

 
slides icon Slides  
THPMS056 Emittance Preservation in the International Linear Collider Ring to Main Linac Transfer Line 3118
 
  • P. Tenenbaum
    SLAC, Menlo Park, California
  • K. Kubo
    KEK, Ibaraki
  • A. Latina
    CERN, Geneva
  • J. C. Smith
    CLASSE, Ithaca
 
  Funding: Work supported by the US Department of Energy, contract DE-AC02-76SF00515.

The very small vertical beam emittance in the International Linear Collider (ILC) can be degraded by dispersion, xy coupling, transverse wakefields, and time-varying transverse fields introduced by elements with misalignments, strength errors, xy rotation errors, or yz rotation errors in the Ring to Main Linac (RTML) transfer line. We present a plan for emittance preservation in this beamline which uses local, quasi-local, and global correction schemes. Results of simulations of the emittance preservation algorithm are also presented and discussed.