A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gilpatrick, J. D.

Paper Title Page
WEXC01 Experimental Tests of a Prototype System for Active Damping of the E-P Instability at the LANL PSR 1991
  • C. Deibele, S. Assadi, V. V. Danilov, S. Henderson, M. A. Plum, A. K. Polisetti
    ORNL, Oak Ridge, Tennessee
  • J. M. Byrd
    LBNL, Berkeley, California
  • J. D. Gilpatrick, R. C. McCrady, J. F. Power, T. Zaugg
    LANL, Los Alamos, New Mexico
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  • M. J. Schulte, Z. P. Xie
    UW-Madison, Madison, Wisconsin
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725.

A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This talk describes the system configuration, results of several experimental tests and studies of system optimization along with studies of the factors limiting its performance.

slides icon Slides  
FRPMS050 LANSCE-Linac Beam-Centroid Jitter in Transverse Phase Space 4093
  • B. Blind, J. D. Gilpatrick
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the US Department of Energy under contract DE-AC52-06NA25396.

In order to characterize the beam-centroid jitter in transverse phase space, sets of position data of the 100-MeV H+ beam and 800-MeV H- beam were taken in the transport lines of the Los Alamos Neutron Science Center (LANSCE) accelerator complex. Subsequent data evaluation produced initially puzzling inconsistencies in the phase-space plots from different pairs of beam-position monitors. It is shown that very small random measurement errors will produce systematic differences between plots that should nominally be identical. The actual beam-centroid jitter and the amount of random error in the measurements can be extracted from the data by performing simulations and determining the parameters for which the resulting plots are consistent with the results from the data. Examples will be shown.

FRPMS051 Proposed Beam Diagnostics Instrumentation for the LANSCE Refurbishment Project 4099
  • J. D. Gilpatrick, B. Blind, M. J. Borden, J. L. Erickson, M. S. Gulley, S. S. Kurennoy, R. C. McCrady, J. F. O'Hara, M. A. Oothoudt, C. Pillai, J. F. Power, L. Rybarcyk, F. E. Shelley
    LANL, Los Alamos, New Mexico
  Funding: *Work supported by the U. S. Department of Energy.

Presently, the Los Alamos National Laboratory is in the process of planning a refurbishment of various sub-systems within its Los Alamos Neutron Science Center accelerator facility. A part of this LANSCE facility refurbishment will include some replacement of and improvement to existing older beam diagnostics instrumentation. While plans are still being discussed, some instrumentation that is under improvement or replacement consideration are beam phase and position measurements within the 805-MHz side-coupled cavity linac, slower wire profile measurements, typically known as wire scanners, and possibly additional installation of fast ionization-chamber loss monitors. This paper will briefly describe the requirements for these beam measurements, what we have done thus far to answer these requirements, and some of the technical issues related to the implementation of these instrumentation.

FRPMS052 H+ and H- Beam Position and Current Jitter at LANSCE 4105
  • J. D. Gilpatrick, B. Blind, M. S. Gulley, C. Pillai, J. F. Power
    LANL, Los Alamos, New Mexico
  Funding: *Work supported by the U. S. Department of Energy.

During the CY2005 and CY2006 Los Alamos Neutron Science Center (LANSCE) beam runs, six beam-development shifts were performed in order to acquire and analyze beam-current and beam-position jitter data for both the LANSCE H+ and H- beams. These data were acquired using three beam position monitors (BPMs) from the 100-MeV Isotope Production Facility (IPF) beam line and three BPMs from the Switchyard transport line at the end of the LANSCE 800-MeV linac. The two types of data acquired, intermacropulse and intramacropulse, were analyzed for statistical and frequency characteristics as well as various other correlations including comparing their phase-space characteristics in a coordinate system of transverse angle versus transverse position. This paper will briefly describe the measurements required to acquire these data, the analysis of these jitter data, and some interesting implications to beam operation.

FRPMS055 LANSCE Prototype Beam Position and Phase Monitor (BPPM) Mechanical Design 4123
  • J. F. O'Hara, M. J. Borden, D. C. Bruhn, J. L. Erickson, J. D. Gilpatrick, S. S. Kurennoy
    LANL, Los Alamos, New Mexico
  Funding: Work supported by United States Department of Energy

A prototype Beam Position and Phase Monitor (BPPM) beam line device is being designed to go in the LANSCE 805-MHz linac. The concept is to install two beam line devices in locations where their measurements can be compared with older existing Delta-T loop and wire scanner measurements. The plan is to install two devices so that transverse position, angular trajectory, as well as central beam phase and energy will be measured. The mechanical design will combine features from previous LANL designs that were done for the LANSCE Isotope Production Facility, LANSCE Switchyard project, and those done for the SNS linac. This paper will discuss the mechanical design and fabrication issues encountered during the course of developing the BPPM.