A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Calaga, R.

Paper Title Page
TUPMS076 Status of R&D Energy Recovery Linac at Brookhaven National Laboratory 1347
 
  • V. Litvinenko, J. Alduino, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, C. Longo, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, J. Smedley, K. Smith, J. E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A. M.M. Todd
    AES, Princeton, New Jersey
  • B. W. Buckley
    CLASSE, Ithaca
  • G. Citver
    Stony Brook University, StonyBrook
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under the auspices of the U. S. Department of Energy and partially funded by the US Department of Defence.

In this paper we present status and plans for the 20-MeV R&D energy recovery linac, which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in 2008, aims to address many outstanding questions relevant for high current, high brightness energy-recovery linacs.

 
TUPAN048 Beam-beam Effects With an External Noise in LHC 1496
 
  • K. Ohmi
    KEK, Ibaraki
  • R. Calaga
    BNL, Upton, Long Island, New York
  • W. Hofle, R. Tomas, F. Zimmermann
    CERN, Geneva
 
  Proton beam do not have any damping mechanism for an incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. Nonlinear force due to the beam-beam interactions causes a decoherence for the betatron motion with keeping an amplitude of each beam particle, with the result that an emittance growth arises. We focus fast transverse turn by turn noises caused by a bunch by bunch feedback system and a cavity phase zitter in crab collision.  
TUPAS089 Small Angle Crab Compensation for LHC IR Upgrade 1853
 
  • R. Calaga
    BNL, Upton, Long Island, New York
  • K. Akai, K. Ohmi, K. Oide
    KEK, Ibaraki
  • U. Dorda, R. Tomas, F. Zimmermann
    CERN, Geneva
 
  Funding: This work is partially supported by the U. S. DOE

A small angle (< 1mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle, which steeply increases to unacceptable levels as the IP beta function is reduced below its nominal value. The crab compensation in the LHC can be accomplished using only two sets of deflecting rf cavities, placed in collision-free straight sections of LHC to nullify the crossing angles at IP1 & IP5. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, crab RF noise sources. We also explore a 400MHz superconducting cavity design and discuss the pertinent RF challenges.

 
TUPAS094 Transverse Beam Transfer Functions of Colliding Beams in RHIC 1856
 
  • W. Fischer, M. Blaskiewicz, R. Calaga, P. Cameron, Y. Luo
    BNL, Upton, Long Island, New York
  • T. Pieloni
    CERN, Geneva
 
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

We use transverse beam transfer functions to measure tune distributions of colliding beams in RHIC. The tune has a distribution due to the beam-beam interaction, nonlinear magnetic fields – particularly in the interaction region magnets, and non-zero chromaticity in conjunction with momentum spread. The measured tune distributions are compared with calculations.

 
TUPAS095 Experiments with a DC Wire in RHIC 1859
 
  • W. Fischer, N. P. Abreu, R. Calaga, G. Robert-Demolaize
    BNL, Upton, Long Island, New York
  • U. Dorda, J.-P. Koutchouk, F. Zimmermann
    CERN, Geneva
  • A. C. Kabel
    SLAC, Menlo Park, California
  • H. J. Kim, T. Sen
    Fermilab, Batavia, Illinois
  • J. Qiang
    LBNL, Berkeley, California
 
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

A DC wire has been installed in RHIC to explore the long-range beam-beam effect, and test its compensation. We report on experiments that measure the effect of the wire's electro-magnetic field on the beam's lifetime and tune distribution, and accompanying simulations.

 
TUPAS099 A Near-Integer Working Point for Polarized Protons in the Relativistic Heavy Ion Collider 1871
 
  • C. Montag, M. Bai, J. Beebe-Wang, M. Blaskiewicz, R. Calaga, W. Fischer, A. K. Jain, Y. Luo, N. Malitsky, T. Roser, S. Tepikian
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the US Department of Energy.

To achieve the RHIC polarized proton enhanced luminosity goal of 150*1030 cm-2 sec-1 on average in stores at 250 GeV, the luminosity needs to be increased by a factor of 3 compared to what was achieved in 2006. Since the number of bunches is already at its maximum of 111, limited by the injection kickers and the experiments' time resolution, the luminosity can only be increased by either increasing the bunch intensity and/or reducing the beam emittance. This leads to a larger beam-beam tuneshift parameter. Operation during 2006 has shown that the beam-beam interaction is already dominating the luminosity lifetime. To overcome this limitation, a near-integer working point is under study. We will present recent results of these studies.

 
WEPMS088 Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity 2541
 
  • A. Burrill, I. Ben-Zvi, R. Calaga, H. Hahn, V. Litvinenko, G. T. McIntyre
    BNL, Upton, Long Island, New York
  • P. Kneisel, J. Mammosser, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work done under the auspices of the US DOE

One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

 
TUOCKI02 Summary of the RHIC Performance during the FY07 Heavy Ion Run 722
 
  • K. A. Drees, L. Ahrens, J. G. Alessi, M. Bai, D. S. Barton, J. Beebe-Wang, M. Blaskiewicz, J. M. Brennan, K. A. Brown, D. Bruno, J. J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, G. Ganetis, J. W. Glenn, M. Harvey, T. Hayes, H.-C. Hseuh, H. Huang, J. Kewisch, R. C. Lee, V. Litvinenko, Y. Luo, W. W. MacKay, G. J. Marr, A. Marusic, R. J. Michnoff, C. Montag, J. Morris, B. Oerter, F. C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, F. Severino, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, A. Zaltsman, S. Y. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 under the auspices of the US Department of Energy.

After the last successful RHIC Au-Au run in 2004 (Run-4), RHIC experiments now require significantly enhanced luminosity to study very rare events in heavy ion collisions. RHIC has demonstrated its capability to operate routinely above its design average luminosity per store of 2x1026 cm-2 s-1. In Run-4 we already achieved 2.5 times the design luminosity in RHIC. This luminosity was achieved with only 40% of bunches filled, and with β* = 1 m. However, the goal is to reach 4 times the design luminosity, 8x1026 cm-2 s-1, by reducing the beta* value and increasing the number of bunches to the accelerator maximum of 111. In addition, the average time in store should be increased by a factor of 1.1 to about 60% of calendar time. We present an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency of RHIC Au-Au operations during Run-7.

 
slides icon Slides  
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
THPAS091 BPM Calibration Independent LHC Optics Correction 3693
 
  • R. Calaga
    BNL, Upton, Long Island, New York
  • R. Tomas, F. Zimmermann
    CERN, Geneva
 
  Funding: This work is partially supported by the U. S. DOE

The tight mechanical aperture for the LHC imposes severe constraints on both the beta and dispersion beating. Robust techniques to compensate these errors are critical for operation of high intensity beams in the LHC. We present simulations using realistic errors from magnet measurements and alignment tolerances in the presence of BPM noise. Correction reveals that the use of BPM calibration and model independent observables are key ingredients to accomplish optics correction. Experiments at RHIC to verify the algorithms for optics correction are also presented.

 
THPAS096 Optics of a Two-Pass ERL as an Electron Source for a Non-Magnetized RHIC-II Electron Cooler 3708
 
  • D. Kayran, I. Ben-Zvi, R. Calaga, X. Chang, J. Kewisch, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U. S. Department of Energy contract No DE-AC02-98CH1-886 with support from the US Department of Defense.

Non-magnetized electron cooling of RHIC requires an electron beam energy of 54.3 MeV, electron charge per bunch of 5 nC, normalized rms beam emittance of 4 mm-mrad, and rms energy spread of 3·10-4 *. In this paper we describe a lattice of a two-pass SCRF energy recovery linac (ERL) and results of a PARMELA simulation that provides electron beam parameters satisfying RHIC electron cooling requirements.

* A. Fedotov, Electron Cooling Studies for RHIC II http://www.bnl.gov/cad/ecooling/docs/PDF/Electron_Cooling.pdf

 
FRPMN078 Improved Algorithms to Determine Non-Linear Optics Model of the SPS from Non-Linear Chromaticity 4231
 
  • R. Tomas, G. Arduini, G. Rumolo, F. Zimmermann
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • A. Faus-Golfe
    IFIC, Valencia
 
  Funding: This work is partially supported by the U. S. DOE

In recent years several measurements of the SPS non-linear chromaticity have been performed in order to determine the non-linear optics model of the SPS machine at injection energy for different cycles. In 2006 additional measurements have been performed at injection and during the ramp for the cycle used to accelerate the LHC beam. New and more robust matching algorithms have been developed in 2006 to fit the model to the measurements up to arbitrary chromatic order. In this paper we describe the algorithms used in the analysis of the data and we summarize and compare the results from all experiments.

 
FRPMS109 Measurement and Correction of Third Resonance Driving Term in the RHIC 4351
 
  • Y. Luo, M. Bai, J. Bengtsson, R. Calaga, W. Fischer, N. Malitsky, F. C. Pilat, T. Satogata
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH10886.

To further improve the polarized proton (pp) run collision luminosity in the Relativistic Heavy Ion Collider, correction of the horizontal two-third resonance is desirable to increase the available tune space. The third resonance driving term (RTD) is measured with the turn-by-turn (TBT) beam position monitor (BPM) data with AC dipole excitation. A first order RTD response matrix based on the optics model is used to on-line compensate the third resonance driving term h30000 while keeping other first order RTDs and first order chromaticities unchanged. The results of beam experiment and simulation correction are presented and discussed.