A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Burrill, A.

Paper Title Page
TUPMS076 Status of R&D Energy Recovery Linac at Brookhaven National Laboratory 1347
 
  • V. Litvinenko, J. Alduino, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, C. Longo, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, J. Smedley, K. Smith, J. E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A. M.M. Todd
    AES, Princeton, New Jersey
  • B. W. Buckley
    CLASSE, Ithaca
  • G. Citver
    Stony Brook University, StonyBrook
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under the auspices of the U. S. Department of Energy and partially funded by the US Department of Defence.

In this paper we present status and plans for the 20-MeV R&D energy recovery linac, which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in 2008, aims to address many outstanding questions relevant for high current, high brightness energy-recovery linacs.

 
TUPMS089 Thermal Emittance Measurement Design for Diamond Secondary Emission 1374
 
  • Q. Wu, I. Ben-Zvi, A. Burrill, X. Chang, D. Kayran, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
 
  Thermal emittance is a very important characteristic of cathodes. A lower thermal emittance cathode has a better performance in limiting emittance for transport down the beam line. A diamond amplified photocathode, being a negative electron affinity (NEA) cathode, promises to deliver a very small thermal emittance. A carefully designed method of measuring the emittance of secondary emission from diamond is presented for the first time. Comparison of possible schemes is carried out by simulation, and the most accessible and accurate method and values are chosen. Systematic errors can be controlled within a very small range, and are carefully evaluated. Aberration and limitations of all equipment are taken into account.  
WEOCC04 Recent Progress on the Diamond Amplified Photo-cathode Experiment 2044
 
  • X. Chang, I. Ben-Zvi, A. Burrill, J. G. Grimes, T. Rao, Z. Segalov, J. Smedley
    BNL, Upton, Long Island, New York
  • Q. Wu
    IUCF, Bloomington, Indiana
 
  We report recent progress on the Diamond Amplified Photo-cathode (DAP). The use of a pulsed electron gun provides detailed information about the DAP physics. The secondary electron gain has been measured under various electric fields. We have achieved gains of a few hundred in the transmission mode and observed evidence of emission of electrons from the surface. A model based on recombination of electrons and holes during generation well describes the field dependence of the gain. The emittance measurement system for the DAP has been designed, constructed and is ready for use. The capsule design of the DAP is also being studied in parallel.  
slides icon Slides  
WEPMS088 Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity 2541
 
  • A. Burrill, I. Ben-Zvi, R. Calaga, H. Hahn, V. Litvinenko, G. T. McIntyre
    BNL, Upton, Long Island, New York
  • P. Kneisel, J. Mammosser, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work done under the auspices of the US DOE

One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

 
WEPMS089 Multipacting Analysis of a Quarter Wave Choke Joint used for Insertion of a Demountable Cathode into a SRF Photoinjector 2544
 
  • A. Burrill, I. Ben-Zvi
    BNL, Upton, Long Island, New York
  • M. D. Cole, J. Rathke
    AES, Princeton, New Jersey
  • P. Kneisel, R. Manus, R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work done under the auspices of the US DOE.

The multipacting phenomena in accelerating structures and coaxial lines are well documented and methods of mitigating or suppressing it are understood. The multipacting that occurs in a quarter wave choke joint designed to mount a cathode insertion stalk into a superconducting RF photoinjector has been analyzed via calculations and experimental measurements and the effect of introducing multipacting suppression grooves into the structure is analyzed. Several alternative choke joint designs are analyzed and suggestions made regarding future choke joint development. Furthermore, the problems encountered in cleaning the choke joint surfaces, factors important in changes to the secondary electron yield, are discussed and evaluated. This design is being implemented on the BNL 1.3 GHz photoinjector, previously used for measurement of the quantum efficiency of bare Nb, to allow for the introduction of other cathode materials for study, and to verify the design functions properly prior to constructing our 703 MHz photoinjector with a similar choke joint design.

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides