TOPE  —  Linear Colliders   (17-May-05   15:30—17:10)

Chair: M. Tigner, Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York

Paper Title Page
TOPE001 Experience with the TTF-2 1
 
  • L. Lilje
    DESY, Hamburg
 
  The TESLA Test Facility in its second phase (TTF-2) serves two main purposes: It is a testbed for the superconducting RF technology for the International Linear Collider as well as a user facility providing a VUV-FEL beam for experiments using synchrotron light. The presentation will review the progress on the superconducting RF technology. This includes tests on individual cavities as well as full accelerating modules. First experiences with the setup of TTF-2 will be presented. Among others, the measurements of higher order modes in the superconducting cavities are presented. Measurements of the beam properties will be shown.  
TOPE002 Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program 204
 
  • C. Adolphsen
    SLAC, Menlo Park, California
 
  In the early 1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf components) and reasonable efficiencies at high gradients (hence shorter linacs). However, to realize such savings requires operation at gradients and peak powers much higher than that hitherto achieved. During the past 15 years, these challenges were met through innovations on several fronts, and resulted in a viable rf system design for a linear collider. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.  
TOPE003 Results from DR and Instrumentation Test Facilities 305
 
  • J.U. Urakawa
    KEK, Ibaraki
 
  The KEK Accelerator Test Facility (ATF) is a 1.3GeV storage ring capable of producing ultra-low emittance electron beams and has a beam extraction line for ILC R&D. The ATF has proven to be an ideal place for researches with small, stable beams. 2x1010 single bunch and low current 20 bunch-train with 2.8nsec bunch spacing have been extracted to develop Nano-Cavity BPM’s, FONT, Nano Beam Orbit handling (FEATHER), Optical Diffraction Radiation (ODR) monitor, a precision multi-bunch laser-based beam profile monitor and polarized positron beam generation via backward-Compton scattering by the international collaboration. A set of three cavity BPM's is installed in the ATF extraction line on a set of extremely stiff supports. The KEK group installed another set of three BPM's, with their own support mechanism. The full set of 6 will prove extremely useful. In the DR (Damping Ring), we are researching the fast ion instability, micro-wave instability with four sets of damping wiggler and developing pulsed laser wire monitor, X-ray SR monitor, very fast kicker with about 1nsec rise/fall time to make ILC beam. I will report the recent results on above R&D’s.  
TOPE004 CLIC Progress Towards Multi-TeV Linear Colliders 353
 
  • H.-H. Braun
    CERN, Geneva
 
  Novel parameters of an e+/e- Linear Collider based on CLIC technology with a broad colliding energy range from 0.5 to 5 TeV are presented for an optimised luminosity of 8x1034 cm-2s-1 at the nominal energy of 3 TeV. They are derived in part from the very successful tests and experience accumulated in the CLIC Test facility, CTF2. A new and ambitious test facility, CTF3, presently under construction at CERN within an international collaboration of laboratories and institutes, and aimed at demonstrating the key feasibility issues of the CLIC scheme, is described.