A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
TPAP005 Calculation of Residual Dose Rates and Intervention Scenarios for the LHC Beam Cleaning Insertions–Constraints and Optimization insertion, simulation, radiation, quadrupole 940
  • M. Brugger, O. Aberle, R.W. Assmann, D. Forkel-Wirth, H.G. Menzel, S. Roesler, H. Vincke
    CERN, Geneva
  Radiation protection of the personnel who will perform interventions in the LHC Beam Cleaning Insertions is mandatory and includes the design of equipment and the establishment of work procedures. Residual dose rates due to activated equipment are expected to reach significant values such that any maintenance has to be planned and optimized in advance. Three-dimensional maps of dose equivalent rates at different cooling times after operation of the LHC have been calculated with FLUKA. The simulations are based on an explicit calculation of induced radioactivity and of the transport of the radiation from the radioactive decay. The paper summarizes the results for the Beam Cleaning Insertions and discusses the estimation of individual and collective doses received by personnel during critical interventions, such as the exchange of a collimator or the installation of Phase 2. The given examples outline the potential and the need to optimize, in an iterative way, the design of components as well as the layout of the beam cleaning insertions. Furthermore, results of measurements and simulations of residual dose rates for a collimator test recently performed at the SPS are presented.  
WPAE034 Fast Neutron Damage Studies on NdFeB Materials radiation, permanent-magnet, multipole, hadron 2351
  • J.E. Spencer, S.D. Anderson, R. Wolf
    SLAC, Menlo Park, California
  • A. Baldwin, D.E. Pellet
    UCD, Davis, California
  • M. Boussoufi
    UCD/MNRC, McClellan, California
  • J.T. Volk
    Fermilab, Batavia, Illinois
  Funding: Support of this work was under U.S. Dept. of Energy contracts DE-AC02-76SF00515, DE-AC02-76CH03000 and LCRD contract DE-FG02-03ER41280.

Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetization measurements for the different materials.