FOAB  —  Application of Accelerators   (20-May-05   08:30—12:25)

Chair: R. Sah, Siemens Medical Solutions USA, Inc., Oncology Care Systems Group, Concord

Paper Title Page
FOAB001 Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration 49
 
  • J.P. Reijonen
    LBNL, Berkeley, California
 
  Funding: This work is being support by U.S. Department of Energy under contract No. DE-AC03-76SF00098.

The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0 – 9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration in form of neutron based, sub-surface hydrogen detection systems. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Three main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

 
FOAB002 Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications 240
 
  • A.V. Mishin
    AS&E, Billerica, Massachusetts
 
  At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world’s most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band and S-band systems for medical and NDT applications. The regulated pulse length systems operating in a range from nanoseconds to microseconds have been built both in X-band and in S-band frequency range.  
FOAB003 Recent Developments in Hadron Therapy Accelerators
 
  • H.-U. Klein
    ACCEL, Bergisch Gladbach
 
  In the last decade interest and investments in Hadron Therapy Systems have been steadily increasing resulting in a substantial number of projects currently under construction or entering detailed planning stage. Main routes are pure proton therapy systems and Carbon ion therapy systems which can also run on protons. While the basic accelerator concept for hadron therapy systems is well established there are many considerations on the type and layout of the particle delivery system including the accelerator, an energy selection system, either a fixed beam set up or a rotating gantry, the "nozzle" containing either a scattering or a scanning system, the patient positioner, and all associated control systems. The requirements for the accelerator include most stable beams to match the demand of modern fast scanning systems as well as fast switching between treatment rooms. Currently an ion/proton synchrotron, a pure proton synchrotron, a normalconducting proton cyclotron and a newly developed compact superconducting proton cyclotron are the accelerators of choice for the various hadron therapy systems, which will be analysed and compared in this paper.  
FOAB004 Construction of FFAG Accelerators in KURRI for ADS Study 350
 
  • M. Tanigaki, K. Mishima, S. Shiroya
    KURRI, Osaka
  • S. Fukumoto, Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • M. Inoue
    SLLS, Shiga
  • S. Machida, Y. Mori
    KEK, Ibaraki
 
  KART (Kumatori Accelerator driven Reactor Test) project is in progress at Kyoto University Research Reactor Institute (KURRI) from the fiscal year of 2002. The purposes of this project is the feasibility study of ADS, such as studying the effect of incident neutron energy on the effective multiplication factor of the subcritical nuclear fuel system. We are now constructing a proton FFAG accelerator complex as a neutron production driver for this project. Our accelerator complex consists of a 2.5 MeV FFAG with induction acceleration as an injector, 20 MeV and 150 MeV FFAGs with RF acceleration as a booster and a main ring, respectively. Our FFAG injector is a spiral sector type with 32 trim coils to produce a magnetic field of variable field index. Both booster and main rings are the radial sector type in which the field index is determined by the shape of pole-face. The test operations of the injector and the whole FFAG complex are expected around the spring and summer in 2005, respectively. Then this FFAG complex will be combined with our Kyoto University Critical Assembly (KUCA) in KURRI by the end of March 2006 for the feasibility study.  
FOAB005 Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac 446
 
  • S.P. Karasyov, A.N. Dovbnja, L. Eran, Y.P. Melnik, Y. Ran'iuk, I.N. Shlyakhov
    NSC/KIPT, Kharkov
  • A.J. Baratta
    Penn State University, University Park, Pennsylvania
  • N.M. Kiryukhin
    ATSU, Kiev
  • S.V. Trubnikov
    KhNU, Kharkov
 
  Funding: This project is funded by CRDF FSTM UKE2-5023-KH-04.

A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil’ clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors’ own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described. The results of the first experiments by use variable energy linac are cited.

 
FOAB006 Industrial Applications of High Average Power FELS
 
  • M.D. Shinn
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work supported by the Office of Naval Research, NAVSEA PMS-405, the Joint Technology Office, the Air Force Research Laboratory, the U.S. Night Vision Laboratory, the Commonwealth of Virginia, and by DOE Contract DE-AC05-84ER40150.

The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility’s users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upgrades will extend operation beyond 10 kW average power in the IR and kilowatt levels of power at wavelengths from 0.3 to 14 microns.

 
FOAB007 The Compact Light Source: A Miniature Synchrotron Light Source
 
  • R.D. Ruth
    Lyncean Technologies, Inc., Palo Alto, California
 
  Funding: Supported by the National Institute of General Medical Sciences, the National Insitutes of Health, R44 GM665011.

During the past 30 years, synchrotron light sources have become the x-ray probe of choice for physicists, chemists, biologists and research physicians. With their high-quality, intense x-ray beams, these national research facilities have spawned a broad array of applications. Past research at Stanford Linear Accelerator Center has led to a new x-ray source concept that can substantially reduce the size of the required synchrotron.* This research has spawned a new corporation, Lyncean Technologies, Inc. which is now developing the Compact Light Source (CLS). The CLS is a tunable, homelab x-ray source with up to three beamlines that can be used like the x-ray beamlines at the synchrotrons–but it is about 200 times smaller than a synchrotron light source. The compact size is achieved using a laser undulator and a miniature electron-beam storage ring. The photon flux on a sample will be comparable to the flux of highly productive synchrotron beamlines. At Lyncean Technologies, Inc. we have constructed a prototype of this source with funding from the NIGMS Protein Structure Initiative. I will report on commissioning progress and long-term outlook for the Compact Light Source.

*Z.Huang and R.D. Ruth, "Laser-Electron Storage Ring," Phys. Rev. Lett., 80:976-979, 1998.

 
FOAB008 Muon Radiography
 
  • C.L. Morris
    LANL, Los Alamos, New Mexico
 
  Funding: U.S. DOE.

The interaction of muons with matter is dominated by the Coulomb interaction. The Coulomb interaction can be factored into the interaction with electrons which results in continuous energy loss and eventual stopping of the charged particle with very small changes in the direction while the interaction with the atomic nuclei results in relatively larger angle changes with only small changes in the energy. Each if these interactions provides a radiographic signal which can be used to study the internal structure of objects. These radiographies will be contrasted with each other, and some data obtained with cosmic ray muons will be presented.*

*Borozdin, K.N., Hogan, G.E., Morris, C., Priedhorsky, W.C., Saunders, A., Schultz, L.J., Teasdale, M.E., "Surveillance: Radiographic Imaging with Cosmic-Ray Muons," Nature, Mar 20, 2003, v. 422, no. 6929, p. 277.

 
FOAB009 The Frankfurt Funneling Experiment 677
 
  • H. Zimmermann, U. Bartz, D. Ficek, P. Fischer, N. Mueller, A. Schempp, J. Thibus, M. Vossberg
    IAP, Frankfurt-am-Main
 
  Funding: BMBF

Funneling is a technique to multiply beam currents of rf-accelerators in several stages at low energies to prevent problems with space charge. The Frankfurt Funneling Experiment is a prototype of such a stage. Two beams accelerated in a Two-Beam RFQ are combined to one beam axis with a funneling deflector. The last part of the RFQ electrodes of our Two-Beam RFQ has been replaced to achieve a 3d focus of both beams at the beam crossing point behind the RFQ in the center of the deflector. A newly designed multi cell funneling deflector and first results of the new experimental set-up will be presented.

 
FOAB010 Present Status of Photo-Cathode RF Gun System and Its Applications 710
 
  • R. Kuroda, Y. Hama, K. Hidume, M. Kawaguchi, R. Moriyama, T. Saito, K. Sakaue, M. Washio
    RISE, Tokyo
  • H. Hayano, J.U. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
 
  High quality electron beam generation using photo-cathode rf gun system and its applications have been developed at Waseda University. This system can generate up to 4.6 MeV low emittance electron beam. It is applied for soft X-ray generation using laser Compton scattering and pulse radiolysis experiments based on the pump-probe technique. In the former, Compton scattering experiments between about 4.6 MeV electron beam and 1047 nm laser beam is performed at 20 degrees interaction angle, so that about 370 eV soft X-ray is generated. In the latter, the electron beam is used for the pump beam and the probe beam is generated as white light by concentrating laser beam on the water cell, so that the measurement with about 30 ps (FWHM) time resolution of the pulse radiolysis system is demonstrated for the absorption of hydrated electrons. In this conference, we will present the experimental results, status of this system and future applications.