Conventional Magnets/e+e- Colliders

Paper Title Page
MPPT002 Design and Experiment of the BEPCII IR Conventional Dual Aperture Quadrupole
  • Z. Yin, Y. Wu, J.F. Zhang
    IHEP Beijing, Beijing
  The quadrupole magnet Q1a is one of the final horizontal focus quadrupoles for the Beijing Electron-Positron Collider Interaction Region (BEPCII IR). The BEPCII IR lattice design specification calls for a very high field quality for the quadrupole magnet. The Q1a is a conventional dual apertures quadrupole magnet. The required integral quadrupole strengths in two apertures are the same. This magnet is a septum quadrupole with high current density and solid core. 2D pole contour optimization and pole end chamfers are used to minimize harmonic error. The design methods, experiment results and magnet performances are described in this paper.  
  • N. Li
    SLAC, Menlo Park, California
  • F. Huang, H. Qu
    IHEP Beijing, Beijing
  Funding: DOE National Institutes of Health.

Few problems occurred during the SPEAR3 magnets production at IHEP, China. It was very hard to find resolution from existing knowledge of those problems. It was possible that similar problems might happen in building accelerator magnet in other institutes before, but they were not addressed in public papers. Those problems were discussed and solved by engineers from both SSRL and IHEP after conducting certain experiments. Traditionally, the magnet design and measurement data have been always well documented and addressed in the papers, but the production experiences have not been recorded adequately. It is the goal of this paper to record the problems and their resolutions during SPEAR3 magnet production, which will certainly benefit future magnet projects.

MPPT004 End Chamfer Study and Field Measurements of the BEPCII Dipoles 919
  • W. Chen, C. Cao, C. Shi, Z. Yin
    IHEP Beijing, Beijing
  The new BEPCII double ring will be added in the existing BEPC tunnel. There are more than 40 bending magnets named 67B in the new ring. The 67B is conventional ‘C’-type dipole magnet. The magnetic filed properties are dominated by the magnet end effect. The end effect have been studied and minimized by a proper end chamfer. Magnetic measurements of the prototype and productions were carried out using long coil. The developing process of the pole end chamfers and the measurement results of the 67B prototype and batch productions are described in the paper.  
MPPT005 A New Slotted-Pipe Kicker Magnet for BEPCII Storage Ring 955
  • W. Kang, Y. Hao
    IHEP Beijing, Beijing
  The requirements of BEPCII injecting kicker magnets are so severe. In the range of ?x=±20mm, the field uniformity is required to be better than ±1% in the central plane, ±2% in the y=5mm plane and ±5% in y=10mm plane, while the effective beam impedance of each kicker magnet must be lower than 0.025O. For the large aperture of vacuum chamber and the fast risetime of kicker magnetic field, the two schemes of low impedance kicker magnets used in other accelerator labs in the world are not adaptive to the BEPCII storage ring. A new slotted-pipe kicker magnet, which uses the ceramic bars with metal coating films as the image current conducting paths, proposed in this article solves the difficult problems of BEPCII kicker magnet design. And the successful construction of a prototype has demonstrated that the new scheme of kicker magnets is viable and the structure design of the kicker magnet is reasonable.  
MPPT061 Ideal Wiggler 3511
  • A.A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  Described is the wiggler with reduced nonlinear components for usage in damping ring of Linear Collider. Zigzag field dependence on longitudinal coordinate made by profiling of poles.