A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yano, Y.

Paper Title Page
WPAT053 Results of a High-Power Klystron Dip Test in the KEK Linac 3235
 
  • K. Nakao, S. Fukuda, H. Katagiri, T. Matsumoto, S. Michizono, T. Takenaka, Y. Yano, M. Yoshida
    KEK, Ibaraki
 
  Dip test, which is the measurement of a klystron heater activity, is recently adopted as the standard measurement to maintain the klystron operation in the KEK electron-positron linac. In 2003, we began to use a dip test as the quick way to measure the emission characteristics from the klystron cathode. After the successful results, we made the dedicated measuring systems and measured the dips of the cathode emission of 60 operating klystrons in KEK electron-positron linac. These data are important to estimate the klystron cathode life and used to select the candidate klystrons of replacement in the summer maintenance period.  
TPPP007 Recent Progress at KEKB 1045
 
  • Y. Funakoshi, K. Akai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K.  Furukawa, T. Furuya, J. Haba, S. Hiramatsu, T. Ieiri, N. Iida, H. Ikeda, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, A. Morita, T.T. Nakamura, H. Nakayama, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, M. Ono, M. Shimada, S. Stanic, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, N. Yamamoto, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
 
  We summarize the machine operation of KEKB during past one year. Progress for this period, causes of present performance limitations and future prospects are described.  
WPAT051 Development of Toshiba L-Band Multi-Beam Klystron for European XFEL Project 3153
 
  • Y.H. Chin
    KEK, Ibaraki
  • S. Choroba
    DESY, Hamburg
  • M. Y. Miyake, Y. Yano
    Toshiba, Yokohama
 
  A 10MW L-band multi-beam klystron (MBK)is under develpment at Toshiba, Japan for DESY X-FEL and a future linear collider projects. The design goals are to have 10MW peak power with 65% efficiency at 1.5 ms pulse length at 10Hz repetition rates. The Toshiba MBK has six low-perveance beams operated at low voltage of 115kV (for 10MW) to enable a higher efficiency than a single-beam klystron for a similar power. The prototyp·10-0 has been built and is now under testing. At the first step, it was tested without RF and operates stably at the cathode voltage of 115KV at 1.7ms pulse length at 10Hz repetition rate with beam transmission of better than 99%. No spurious oscillation was observed. The testing is now progressed with RF on. Up to date of November 10, 2004, The output power of 10.3MW has been demonstrated at the beam voltage of 115kV with efficinecy of 68.4% at the RF pulse length of 1ms at 10Hz. The testing is under way to increase the RF pulse length to the goal value of 1.5ms. This paper summarizes the design and the testing results.  
ROPC003 RIKEN RI Beam Factory Project 320
 
  • Y. Yano
    RIKEN/RARF/CC, Saitama
 
  The world-top-class radioactive-isotope-beam (RIB) facility, which is called ?RI beam factory (RIBF)?, is under construction at RIKEN. This facility is based on the so-called ?in-flight RI beam separation? scheme. Late in 2006, a new high-power heavy-ion accelerator system consisting of a cascade of three ring cyclotrons with K=570 MeV (fixed frequency, fRC), 980 MeV (Intermediate stage, IRC) and 2500 MeV (superconducting, SRC), respectively, will be commissioned. This new accelerator system will boost energies of the output beams from the existing K540-MeV ring cyclotron up to 440 MeV/nucleon for light ions and 350 MeV/nucleon for very heavy ions. These energetic heavy-ion beams are converted into intense RI beams via the projectile fragmentation or in-flight fission of uranium ions by the superconducting isotope separator, BigRIPS, under construction. The combination of the SRC and BigRIPS will expand our nuclear world into presently unreachable region. Major experimental installations are under priority discussion as the second phase program. Construction of the second phase is expected to start in 2006.  
FPAE068 Charge Strippers in the RIKEN RI-Beam Factory 3751
 
  • H. Ryuto, N. Fukunishi, A. Goto, H. Hasebe, N. Inabe, O. Kamigaito, M. Kase, Y. Yano, S. Yokouchi
    RIKEN/RARF/CC, Saitama
 
  In the RIKEN RI-Beam Factory, ions from hydrogen to uranium are planned to be accelerated by four cyclotrons and linacs using four stripper sections. The charge stripping schemes for typical ions and the selection of the charge strippers are described. The results of the measurements on charge state fractions are presented.