A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Solyak, N.

Paper Title Page
TPPT070 Development of the Superconducting 3.9 GHz Accelerating Cavity at Fermilab 3825
 
  • N. Solyak, T.T. Arkan, P. Bauer, L. Bellantoni, C. Boffo, E. Borissov, H. Carter, H. Edwards, M. Foley, I.G. Gonin, T.K. Khabiboulline, S.C. Mishra, D.V. Mitchell, V. Poloubotko, A.M. Rowe, I. Terechkine
    Fermilab, Batavia, Illinois
 
  Funding: U.S. Department of Energy.

A superconducting third harmonic accelerating cavity (3.9 GHz) was proposed to improve beam quality in the TTF-like photoinjector. Fermilab has developed, built and tested several prototypes, including two copper 9-cell cavities, and niobium 3-cell and 9-cell cavities. The helium vessel and frequency tuner for the 9-cell cavity was built and tested as well. In cold tests, we achieved a peak surface magnetic field of ~120mT, well above the 70mT specification. The accelerating gradient was limited by thermal breakdown. Studies of the higher order modes in the cavity revealed that the existing cavity design with two HOM couplers will provide sufficient damping of these modes. In this paper we discuss the cavity design, results of the studies and plans for further development.

 
WPAT050 High Power Phase Shifter 3123
 
  • I. Terechkine, G.W. Foster, I.G. Gonin, T.K. Khabiboulline, A. Makarov, N. Solyak, D. Wildman
    Fermilab, Batavia, Illinois
 
  One of the approaches to power distribution system of a superconducting proton linac that is under discussion at Fermilab requires development of a fast-action, megawatt-range phase shifter. Using two phase shifters with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity of the linac. This promises significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of a phase shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device and main results of simulation and proof-of-principle tests.  
WPAT094 Traveling Wave Accelerating Structure for a Superconducting Accelerator 4296
 
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • P.A. Avrakhov
    LPI, Moscow
  • N. Solyak
    Fermilab, Batavia, Illinois
 
  We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.  
TPPT056 Design of a Low Loss SRF Cavity for the ILC 3342
 
  • J.S. Sekutowicz
    DESY, Hamburg
  • L. Ge, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman, L. Xiao
    SLAC, Menlo Park, California
  • I.G. Gonin, T.K. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • Y. Morozumi, K. Saito
    KEK, Ibaraki
 
  An international team comprising DESY, KEK, JLAB, FNAL and SLAC is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TTF structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.  
ROAC004 High Gradient Performance of NLC/GLC X-Band Accelerating Structures 372
 
  • S. Doebert, C. Adolphsen, G.B. Bowden, D.L. Burke, J. Chan, V.A. Dolgashev, J.C. Frisch, R.K. Jobe, R.M. Jones, R.E. Kirby, J.R. Lewandowski, Z. Li, D.J. McCormick, R.H. Miller, C.D. Nantista, J. Nelson, C. Pearson, M.C. Ross, D.C. Schultz, T.J. Smith, S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California
  • T.T. Arkan, C. Boffo, H. Carter, I.G. Gonin, T.K. Khabiboulline, S.C. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Funahashi, H. Hayano, N. Higashi, Y. Higashi, T. Higo, H. Kawamata, T. Kume, Y. Morozumi, K. Takata, T. T. Takatomi, N. Toge, K. Ueno, Y. Watanabe
    KEK, Ibaraki
 
  Funding: Work Supported by DOE Contract DE-AC02-76F00515.

During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper presents a final summary of the results from this program, which effectively ended last August with the selection of ‘cold’ technology for a next generation linear collider.