A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ross, M.C.

Paper Title Page
MPPE044 Damping Wiggler Study at KEK-ATF 2809
 
  • T. Naito, H. Hayano, Y. Honda, K. Kubo, M. Kuriki, S. Kuroda, T. Muto, N. Terunuma, J.U. Urakawa
    KEK, Ibaraki
  • M. Korostelev, F. Zimmermann
    CERN, Geneva
  • N. Nakamura, H. Sakai
    ISSP/SRL, Chiba
  • M.C. Ross
    SLAC, Menlo Park, California
 
  The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.  
TPPP033 Cavity Alignment Using Beam Induced Higher Order Modes Signals in the TTF Linac 2284
 
  • M.C. Ross, J.C. Frisch, K.E. Hacker, R.M. Jones, D.J. McCormick, C.L. O'Connell, T.J. Smith
    SLAC, Menlo Park, California
  • N. Baboi, M.W. Wendt
    DESY, Hamburg
  • O. Napoly, R. Paparella
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  Funding: DE-AC02-76SF00515.

Each nine cell superconducting accelerator cavity in the TESLA Test Facility (TTF) at DESY* has two higher order mode (HOM) couplers that efficiently remove the HOM power.** They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and commissioned a four channel heterodyne receiver and time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present an experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

*P. Piot, DESY-TESLA-FEL-2002-08. **R. Brinkmann et al. (eds.), DESY-2001-011.

 
TOAD004 The Possibility of Noninvasive Micron High Energy Electron Beam Size Measurement Using Diffraction Radiation 404
 
  • G.A. Naumenko, A. Potylitsyn
    Tomsk Polytechnic University, Physical-Technical Department, Tomsk
  • S. Araki, A. Aryshev, H. Hayano, V. Karataev, T. Muto, J.U. Urakawa
    KEK, Ibaraki
  • D. Cline, Y. Fukui
    UCLA, Los Angeles, California
  • R. Hamatsu
    TMU, Hatioji-shi,Tokyo
  • M.C. Ross
    SLAC, Menlo Park, California
 
  During the last years a noninvasive method for beam size measurement based on the optical diffraction radiation (ODR) has been in progress (P. Karataev, et al., Physical Review Letters 93, 244802 (2004). However this technique encounters with hard sensitivity limitation for electron energies larger than several GeV. For example, for SLAC conditions the sensitivity of this method is 4 orders smaller than an appropriate one. We suggest to use a "dis-phased" slit target, where two semi-planes are turned with respect to each other at a small "dis-phased" angle. In order to ensure the interference between the diverged radiation beams we use a cylindrical lens. This method has much better sensitivity and resolution. A "dis-phased" angle 10 milliradians gives the optimal sensitivity to 5 microns transversal beam size. The theoretical model for calculating the ODR radiation from such targets (including focusing by cylindrical lens) is presented. It is shown that the sensitivity of this method does not depend on the Lorenz-factor directly. The target with the "dis-phased" angle 6.2 milliradians and the slit width 425 microns was manufactured for experimental test. Some preliminary experimental results are presented.  
TPPP035 Performance of the PEP-II B-Factory Collider at SLAC 2369
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.

 
ROAC004 High Gradient Performance of NLC/GLC X-Band Accelerating Structures 372
 
  • S. Doebert, C. Adolphsen, G.B. Bowden, D.L. Burke, J. Chan, V.A. Dolgashev, J.C. Frisch, R.K. Jobe, R.M. Jones, R.E. Kirby, J.R. Lewandowski, Z. Li, D.J. McCormick, R.H. Miller, C.D. Nantista, J. Nelson, C. Pearson, M.C. Ross, D.C. Schultz, T.J. Smith, S.G. Tantawi, J.W. Wang
    SLAC, Menlo Park, California
  • T.T. Arkan, C. Boffo, H. Carter, I.G. Gonin, T.K. Khabiboulline, S.C. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Funahashi, H. Hayano, N. Higashi, Y. Higashi, T. Higo, H. Kawamata, T. Kume, Y. Morozumi, K. Takata, T. T. Takatomi, N. Toge, K. Ueno, Y. Watanabe
    KEK, Ibaraki
 
  Funding: Work Supported by DOE Contract DE-AC02-76F00515.

During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper presents a final summary of the results from this program, which effectively ended last August with the selection of ‘cold’ technology for a next generation linear collider.

 
RPAT077 Beam Test Proposal of an ODR Beam Size Monitor at the SLAC FFTB 4015
 
  • Y. Fukui, D. Cline, F. Zhou
    UCLA, Los Angeles, California
  • A. Aryshev, V. Karataev, T. Muto, M. Tobiyama, J.U. Urakawa
    KEK, Ibaraki
  • P.R. Bolton, M.C. Ross
    SLAC, Menlo Park, California
  • R. Hamatsu
    TMU, Hatioji-shi,Tokyo
  • G.A. Naumenko, A. Potylitsyn, A. Sharafutdinov
    Tomsk Polytechnic University, Physical-Technical Department, Tomsk
 
  We design a single bunch transverse beam size monitor which will be tested to measure the 29 GeV electron/positron beam at the SLAC FFTB beam line.The beam size monitor uses a CCD camera to make images of the interference pattern of the optical diffraction radiation from conductive slit target which are placed close to the beam path. In this method, destruction of the accelerated electron/positron beam bunches due to the beam size monitoring is negligible, which is vital to the operation of the Linear Collider project. A dis-phased conductive slit target and a lens system allow us to recover the sensitivity of the transverse beam size with a small photon yield ratio at the valley to that at the peak due to the large gamma*λ, and with the near field effect due to the large λ*gamma**2. A solution for non-negligible divergence at the SLAC FFTB is also discussed.  
RPPP008 The Short Circumference Damping Ring Design for the ILC 1126
 
  • M. Korostelev, F. Zimmermann
    CERN, Geneva
  • K. Kubo, M. Kuriki, S. Kuroda, T. Naito, J.U. Urakawa
    KEK, Ibaraki
  • M.C. Ross
    SLAC, Menlo Park, California
 
  The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.  
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.  
RPPP013 Tests of the FONT3 Linear Collider Intra-Train Beam Feedback System at the ATF 1359
 
  • P. Burrows, G.B. Christian, C.C. Clarke, A.F. Hartin, H.D. Khah, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.C. Frisch, T.W. Markiewicz, D.J. McCormick, M.C. Ross, S. Smith, T.J. Smith
    SLAC, Menlo Park, California
  • A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • C. Perry
    OXFORDphysics, Oxford, Oxon
 
  We report preliminary results of beam tests of the FONT3 Linear Collider intra-train position feedback system prototype at the Accelerator Test Facility at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with a latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype with delay-loop feedback operation. The achieved latency represents a demonstration of intra-train feedback on timescales relevant even for the CLIC Linear Collider design.  
RPPP036 A Test Facility for the International Linear Collider at SLAC End Station A for Prototypes of Beam Delivery and IR Components 2461
 
  • M. Woods, R.A. Erickson, J.C. Frisch, C. Hast, R.K. Jobe, L. Keller, T.W. Markiewicz, T.V.M. Maruyama, D.J. McCormick, J. Nelson, N. Phinney, T.O. Raubenheimer, M.C. Ross, A. Seryi, S. Smith, Z. Szalata, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • D.A.-K. Angal-Kalinin, C.D. Beard, F.J. Jackson, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Arnold
    University of Massachusetts, Amherst
  • D. Bailey
    ,
  • R.J. Barlow, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • S.T. Boogert, A. Liapine, S. Malton, D.J. Miller, M.W. Wing
    UCL, London
  • P. Burrows, G.B. Christian, C.C. Clarke, A.F. Hartin, S. Molloy, G.R. White
    Queen Mary University of London, London
  • D. Burton, N. Shales, J. Smith, A. Sopczak, R. Tucker
    Microwave Research Group, Lancaster University, Lancaster
  • D. Cussans
    University of Bristol, Bristol
  • C. Densham, J. Greenhalgh
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • M.H. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • Y.K. Kolomensky
    UCB, Berkeley, California
  • W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • N. Sinev, E.T. Torrence
    University of Oregon, Eugene, Oregon
  • M.S. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • Y. Sugimoto
    KEK, Ibaraki
  • S.W. Walston
    LLNL, Livermore, California
  • N.K. Watson
    Birmingham University, Birmingham
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  Funding: U.S. Department of Energy.

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A (ESA). A 10Hz beam at 28.5 GeV energy can be delivered to ESA, parasitic with PEP-II operation. During the engineering design phase for the ILC over the next 5 years, we plan to use this facility to prototype and test key components of the Beam Delivery System (BDS) and Interaction Region (IR). We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to Collimator Wakefields, Materials Damage Tests and Energy Spectrometers. We also plan an IR Mockup of the region within 5 meters of the ILC Interaction Point to investigate effects from backgrounds and beam rf higher-order modes (HOMs).