A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Reece, C.E.

Paper Title Page
TPPT081 Fabrication and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence 4081
 
  • C.E. Reece, E. Daly, S. Manning, R. Manus, S. Morgan, J.P. Ozelis, L. Turlington
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the "Low Loss" (LL) design and eight of the "High Gradient" (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m cw with less than 31 W dynamic heat dissipation. These results, as well as the HOM damping performance will be presented.

 
TPPT082 High Thermal Conductivity Cryogenic RF Feedthroughs for Higher Order Mode Couplers 4108
 
  • C.E. Reece, E. Daly, T. Elliott, J.P. Ozelis, H.L. Phillips, T.M. Rothgeb, K. Wilson, G. Wu
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

The use of higher-order-mode (HOM) pickup probes in the presence of significant fundamental rf fields can present a thermal challenge for cw or high average power SRF cavity applications. The electric field probes on the HOM-damping couplers on the JLab "High Gradient" and "Low Loss" seven-cell cavities for the CEBAF upgrade are exposed to approximately 10% of the peak magnetic field in the cavity. To avoid significant dissipative losses, these probes must remain superconducting during operation. Typical cryogenic rf feedthroughs provide a poor thermal conduction path for the probes, and provide inadequate stabilization. We have developed solutions that meet the requirements, providing a direct thermal path from the niobium probe, thorough single-crystal sapphire, to bulk copper which can be thermally stationed (or heat sunk). Designs, electromagnetic and thermal analyses, and performance data will be presented.

 
RPPE062 The Use of Integrated Electronic Data Capture and Analysis for Accelerator Construction and Commissioning: Pansophy from the SNS Towards the ILC 3556
 
  • J.P. Ozelis, V. Bookwalter, B.D. Madre, C.E. Reece
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work supported by U.S. Department of Energy under contract DE-AC05-84ER40150.

Jefferson Lab has extensively used a proprietary web-based system (Pansophy) that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, as a coherent knowledge management product during the construction of the cryomodules for the SNS Superconducting Linac, providing elements of process and procedure control, data capture and review, and data mining and analysis. With near real-time and potentially global access to production data, process monitoring and performance analyses could be pursued in a timely manner, providing crucial feedback. The extensibility, portability, and accessibility of Pansophy via universally available software components provide the essential features needed in any information and project management system capable of meeting the needs of future accelerator construction efforts, requiring an unprecedented level of regional and international coordination and collaboration, to which Pansophy is well suited.

 
FOAA009 SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature 665
 
  • R.A. Rimmer, J. F. Benesch, J.P. Preble, C.E. Reece
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authored by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running.