A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hattori, T.

Paper Title Page
MPPE081 The Comparison of a New Beam-Tracking Code to the Acceleration Test 4072
 
  • K. Yamamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Hattori
    RLNR, Tokyo
  • M. Okamura
    RIKEN, Saitama
 
  A new beam-tracking code using a 3D electro-magnetic field map of a linac is being developed. In this code, beam dynamics including non-linear and dipole effects can be easily estimated based on simulated field maps provided by commercial 3D analysis software. To verify the code, we manufactured an IH-linac and acceleration test of the linac was carried out with proton beam. The simulated results were compared with the tested acceleration performances.  
TPPE027 Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme 1976
 
  • K. Sakakibara, T. Hattori, N. Hayashizaki, T. Ito
    RLNR, Tokyo
  • H. Kashiwagi
    JAERI/ARTC, Gunma-ken
  • M. Okamura
    RIKEN, Saitama
 
  To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).  
FPAE006 Optimization of AGS Polarized Proton Operation with the Warm Helical Snake 1003
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • L. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J. Glenn, H. Huang, A.U. Luccio, W.W. MacKay, T. Roser, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
 
  Funding: US DOE and RIKEN Japan.

A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.