A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Choi, B.H.

Paper Title Page
RPAP013 Characteristic Experimentations of Degrader and Scatterer at MC-50 Cyclotron 1356
 
  • S.-K. Lee, B.H. Choi, K. R. Kim, LHR. Lee, B.-S. Park
    KAERI, Daejon
 
  Funding: This work is a part of the "Proton Engineering Frontier Project" which is sponsored by the Ministry of Science and Technology of Korea under "21C Frontier R&D Program."

Building proton beam user facilities, especially deciding beam energy level, depends on the attached proton accelerator and users' needs. To adjust beam energy level, two methods are generally used. One is to directly adjust the beam in the accelerator. The other is to adjust beam energy after extracting from the accelerator. Degrader/Scatterer System has been installed in the MC-50 Cyclotron to adjust energy level of the beam used for various application fields. Its degrader and scatterer are made of Al foils and Au foils, respectively. Al thickness are 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01mm and Au thickness are 0.2, 0.1, 0.05, 0.03, 0.02, 0.01mm, respectively. In this study, suitable beam condition was adjusted through overlapping Al/Au foils of various thickness through simulation results. After that, LET(Linear Energy Transfer) value was indirectly acquired by measuring the bragg peak of the external beam through PMMA plastic Phantom and profile was measured by film dosimetry.

 
RPAP014 Uniform Irradiation Systems Using a Rotatable Stage for Test Facilities of PEFP 1383
 
  • B.-S. Park, B.H. Choi, K. R. Kim, S.-K. Lee
    KAERI, Daejon
 
  Funding: This work is a part of the "Proton Engineering Frontier Project" which is sponsored by the Ministry of Science and Technology of Korea under '21C Frontier R&D Program."

A new irradiation facility has been developed using not only electric magnets but also a rotatable stage. Generally, the scanning method using magnet has been widely used in most of facilities. However, in this study another new methods have been developed: Three scanning method using rotatable stage have been proved to make uniform irradiation-as large as 20 cm in diameter with more than 90% uniformity. The mechanical wobbler system makes the same effect as the wobbler system. And the beam is swept along the spiral path with a fixed and variable angular frequency during the scanning in two spiral scanning systems, respectively.

 
RPAT007 Status of Beam Diagnostic Systems for the PEFP 1090
 
  • J.H. Park, J.Y. Huang, W.H. Hwang, Y.W. Parc, S.J. Park
    PAL, Pohang, Kyungbuk
  • Y.-S. Cho, B.H. Choi, S.-H. Han
    KAERI, Daejon
 
  Funding: Supported by the PEFP (Proton Engineering Frontier Project).

A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the PEFP.

 
ROPC007 Status of the Proton Engineering Frontier Project 576
 
  • B.H. Choi
    KAERI, Daejon
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

The Proton Engineering Frontier Project (PEFP) approved and launched by the Korean government in July 2002 includes a 100MeV proton linear accelerator development and a program for its utilization. The first phase of the project, running from 2002 to 2005, was the design of a 100MeV proton linear accelerator and a part of development to 20 MeV. This consists of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20MeV drift tube linac (DTL). The 50 keV injector and the 3 MeV RFQ has been installed and tested, and the 20 MeV DTL is being assembled and tuned for beam tests. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The status and progress of the project are reported in detail.