Keyword: beam-losses
Paper Title Other Keywords Page
WEPOB05 Operational Experience With Beam Abort System for Superconducting Undulator Quench Mitigation ion, kicker, simulation, operation 890
 
  • K.C. Harkay, J.C. Dooling, V. Sajaev, J. Wang
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system–kick amplitudes and loss distributions of all bunches–was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss diagnostics described elsewhere [1]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.
[1] J. Dooling et al., these proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB22 Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade ion, simulation, shielding, injection 943
 
  • A. Xiao, M. Borland
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime  ∼  10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoid particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)