FRA1 —  Oral Presentations (MC6)   (14-Oct-16   08:30—10:30)
Chair: S. Biedron, CSU, Fort Collins, Colorado, USA
Paper Title Page
FRA1IO01
Single Particle Detection With a Schottky Resonator  
 
  • M. Steck
    GSI, Darmstadt, Germany
 
  Presentation would address underlying physics, experimental method / instrumentation and experimental outcomes.  
slides icon Slides FRA1IO01 [12.644 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1IO02
State of the Art X-Ray Photon BPMs for Next Generation Storage Ring Light Sources  
 
  • B.X. Yang
    ANL, Argonne, Illinois, USA
  • R. Ischebeck
    PSI, Villigen PSI, Switzerland
 
  From http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.082802: "A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell- Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers…" The detector design and it's integration for routine use with a transverse mode deflecting cavity will be reviewed with experimental data from the SwissFEL Injector Test Facility.  
slides icon Slides FRA1IO02 [4.095 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1CO03 An Ultra-High Resolution Pulsed-Wire Magnet Measurement System 1268
 
  • A. D'Audney, S. Biedron, S.V. Miltonpresenter
    CSU, Fort Collins, Colorado, USA
 
  The performance of a Free-Electron Laser (FEL) depends in part on the quality of the magnetic field in the undulator. Imperfections in the magnetic field of an undulator lead to an imperfect electron trajectory, both offset and angle, as well as a relative phase error between the oscillation phase of the electrons and the generated electromagnetic field. The result of such errors is a reduction of laser gain impacting overall FEL performance. A pulsed-wire method can be used to determine the profile of the magnetic field. This is achieved by sending a square-current pulse through a wire placed along the length of the axis that will induce a Lorentz-force interaction with the magnetic field. Measurement of the resulting displacement in the wire over time using a motion detector yields the first or second integrals of the magnetic field and so provides a measure of the local magnetic field strength. Dispersion in the wire can be corrected using algorithms, with a resulting increase in overall accuracy of the measurement. We have designed, constructed and tested a pulsed-wire magnetic measurement system and used this system to characterize the CSU FEL undulator.  
slides icon Slides FRA1CO03 [4.318 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA1CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1CO04 6D Phase Space Measurement of Low Energy, High Intensity Hadron Beam 1271
SUPO07   use link to see paper's listing under its alternate paper code  
 
  • B.L. Cathey
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.V. Aleksandrov, S.M. Cousineau, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. The work has been partially supported by NSF grant 1535312
The goal of this project is to demonstrate a method for measuring the full 6D phase space of an low energy, high intensity hadron beam. This is done by combining 4D emittance measurement techniques along with dispersion measurement and a beam shape monitor to provide the energy and phase space components. The measurement will be performed on new Beam Testing Facility (BTF) at the Spallation Neutron Source (SNS), a 2.5 MeV functional duplicate of the SNS accelerator front end.
 
slides icon Slides FRA1CO04 [8.295 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA1CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1CO05 Progress of Gas-Filled Multi-RF-Cavity Beam Profile Monitor for Intense Neutrino Beams 1275
 
  • K. Yonehara, M. Backfish, A. Moretti, A.V. Tollestrup, A.C. Watts, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • Q. Liu
    Case Western Reserve University, Cleveland, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
A novel pressurized gas-filled multi-RF-cavity beam profile monitor has been studied that is simple and robust in high-radiation environments. Charged particles passing through each RF-cavity in the monitor produce intensity-dependent ionized plasma, which changes the gas permittivity. The sensitivity to beam intensity is adjustable using gas pressure and RF gradient. The performance of the gas-filled beam profile monitor has been numerically simulated to evaluate the sensitivity of permittivity measurements. The result indicates that the RF resonator will be useful to measure the beam profile with a charged beam intensity range from 106 to 1013 protons/bunch. The range covers the expected beam intensities in NuMI and LBNF. The demonstration of the monitor with intense proton beams are taken place at Fermilab to validate the simulation result. The result will be given in this presentation.
 
slides icon Slides FRA1CO05 [3.750 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA1CO05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1CO06 Measurement of Coherent Transition Radiation Using Interferometer and Photoconductive Antenna 1279
 
  • K. Kan, M. Gohdo, T. Kondoh, I. Nozawa, J. Yang, Y. Yoshida
    ISIR, Osaka, Japan
 
  Ultrashort electron beams are essential for light sources and time-resolved measurements. Electron beams can emit terahertz (THz) pulses using coherent transition radiation (CTR). Michelson interferometer* is one of candidates for analyzing the pulse width of an electron beam based on frequency-domain analysis. Recently, electron beam measurement using a photoconductive antenna (PCA)** based on time-domain analysis has been investigated. In this presentation, measurement of femtosecond electron beam with 35 MeV energy and < 1 nC from a photocathode based linac will be reported. Frequency- and time- domain analysis of THz pulse of CTR by combining the interferometer and PCA will be carried out.
* I. Nozawa, K. Kan et al., Phys. Rev. ST Accel. Beams 17, 072803 (2014).
** K. Kan et al., Appl. Phys. Lett. 102, 221118 (2013).
 
slides icon Slides FRA1CO06 [2.334 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA1CO06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)