

Ultra-High Resolutions Pulsed-Wire Magnet Measurement System

Stephen Milton, Alex D'Audney, Sandra Biedron Colorado State University

The Advanced Beam Laboratory

The Problem

3

The Problem, or at least one of them.

The Problem, or at least one of them.

Undulator Characterization: Most Common

Traditional Hall probe

CSU Undulator Specs

Parameter	Value
Κ	1 (0.61 T)
Period	2.5 cm
Gap	8 mm
Material	Sm_2CO_5
Periods	50
Length	1.25 m

Additional Background

Students

- Good project for them
 - Measure an undulator
 - Read and understand a paper
 - Build a pulsed current source
 - Buy and assemble the equipment
 - Set up the measurement
 - Make the measurements
 - Write up reports
 - Conference papers
 - Senior design project papers
 - I Masters Thesis

PW History

- Concept first developed by R. W. Warren at LANL in 1988.
- Has been used in a variety of specialized cases in the characterization of magnetic fields.
- The method's accuracy was previously limited due to dispersive effects in the wire and the finite pulse width.
- Newly developed mathematical algorithms can correct for these limitations.

Basic Understanding

Fan, T. C., Lin, F.Y. et al., "Pulsed wire magnetic field measurements on undulator U10P", Proceedings of PAC2001, Chicago, USA, 2001, p. 2775-2777

LBNL Correction Algorithm

Nuclear Instruments and Methods in Physics Research A 716 (2013) 62-70

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

A dispersion and pulse width correction algorithm for the pulsed wire method

D. Arbelaez^{a,*}, T. Wilks^{a,b}, A. Madur^a, S. Prestemon^a, S. Marks^a, R. Schlueter^a

^a Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^b University of California, Berkeley, CA 94720, USA

NUCLEAR INSTRUMENTS

LBNL Results

Output

1st and 2nd magnetic field integrals. Simulates both the transverse velocity and oscillation trajectory of a charged particle passing along the axis of the undulator.

$$u_{s0}(t) = \frac{Ic_0\delta t}{2T} \int_0^{c_0 t} B(\tilde{x}) d\tilde{x} \iff v_x(z) = \frac{1}{\gamma m_e} \int_0^z q B_y(\tilde{z}) d\tilde{z}$$
$$u_{s0}(t) = \frac{I}{2T} \int_0^{c_0 t} \int_0^{\hat{x}} B(\hat{x}) d\hat{x} d\tilde{x} \iff x(z) = \frac{1}{\gamma m_e v_z} \iint_0^z q B_y(\tilde{z}) d\tilde{z} d\tilde{z}$$

Dispersion Correction

From the Euler-Bernoulli equation for the bending of thin rods:

$$c(\kappa) = c_0 \sqrt{1 + \frac{EI_w}{T} \kappa^2}.$$
$$c_0 = \sqrt{T / \mu}$$

\bullet Need to find c_0 and EI_W experimentally.

Wave Speed Determination

$$c = \frac{\omega \Delta z}{\phi}$$

Dispersive Wave Speed

Isolation required

Detector region

18

Setup: Wire Vibration Detection

♦ 635nm fiber laser
♦ 40µm Slit
♦ Amplified Si photo-detector

Dispersion Corrected: Short Pulse (1st Integral)

1st Integral of the Undulator and Ref. Magnet

2nd Integral of the Undulator

System Difficulties

Large amount of noise was prominent.

- Air
- Poor table isolation from ground
- Electrical
- Limitations
 - Oscilloscope resolution

Additional (Potential) Sources of Error

- Electrical
 - Dispersion of current pulse
 - Not a problem for the relatively short length of the wire and low frequencies employed
 - Wire resistance
 - It is roughly 50 Ω so there is a significant voltage drop across it; however,
 - It is the current that matters, so this is not a real problem.

Additional (Potential) Sources of Error

- Mechanical
 - Vibration damping time.

$$A(t) = A_o e^{-t/\tau} \qquad t_u = \frac{L_u}{v_w}$$
$$1 - \frac{A(t_u)}{A_o} = 1 - e^{-t_u/\tau}$$

$$L_{u}$$

$$V_{w}$$
Assume
$$\tau = 2 \sec v_{w} = 200 \text{ m/s}$$

$$L_{u} = 1.5 \text{ m}$$
Then
$$t_{u} = 7.5 \text{ ms}$$

$$1 - \frac{A(t_{u})}{A_{o}} \approx 0.0038$$

Additional (Potential) Sources of Error

Electrical & Computer

Improvements

- Better pulser
 - Originally used a home made current pulse
 - Noisy
 - Bought an AvTech Pulser
 - Very nice but expensive (~\$11k)
 - Computer interface to NI available
 - Works well
- Better digitizer
 - Originally used an available scope
 - Limited dynamic range
 - Limited memory
 - Bought a 16-bit NI digitizer
 - Very nice

- Better environmental isolation
 - The area we were in was VERY noisy and "windy"
- Better reference magnet
 - We were limited to what we had and so ours had a non-zero 2nd integral
 - Would like it as short as possible
 - Higher frequency content

Additional steps

Technology transferred to industry KYMA S.r.L.

Special thanks to Giuseppi Fiorito and Raffaella Geometranta

Find another student to tune the device

Thank you

