Single Particle Detection with a Schottky Resonator

Markus Steck, Storage Rings, GSI Darmstadt

and

P. Hülsmann, Y. Litvinov, F. Nolden, C. Peschke, P. Petri, S. Sanjari, I. Schurig, GSI Darmstadt

X. Chen, J. Wu, IMP Lanzhou, China

The GSI Accelerators: **UNILAC, SIS18 and ESR**

Experimental Storage Ring

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

Fast injection (stable ions / RIBs) Stochastic cooling (\geq 400 MeV/u) Electron cooling (3 - 430 MeV/u) Laser cooling (C³⁺ 120 MeV/u) Internal gas jet target Laser experiments Deceleration (down to 3 MeV/u) Fast extraction (HITRAP/CRYRING) Slow (resonant) extraction **Ultraslow extraction (charge change)** Beam accumulation Multi charge state/ multi component operation Schottky mass spectrometry Isochronous mode

HELMHOLTZ

GEMEINSCHAFT

G S I

Schottky Noise Measurement

some 10⁷ ¹⁹⁷Au⁷⁶⁺ ions at an energy of 300 MeV/u cooling process with electron cooling

reduction of momentum spread initial value: about 10⁻³ final value: some 10⁻⁵

Schottky noise analysis ⇒ momentum spread momentum ⇒ velocity mass charge

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

frequency

Single Particle Detection in ESR

standard capacitive Schottky noise pick-up

broad band (~ 1-150 MHz) resonant circuit (30-80 MHz)

from GSI Scientific Report 1995

single tungsten (¹⁸²W) ion cooled by electron cooling \Rightarrow recombination 74+ \rightarrow 73+

interacting with internal target \Rightarrow ionization 73+ \rightarrow 74+

Revolution frequency of ion [a.u.]

Schottky signal power P = N (Qe)² f_0^2

Schottky Mass Spectrometry

Injection of cocktail rare isotope beam from fragment separator FRS Cooling (stochastic pre-cooling + final electron cooling) Achieved momentum spread ($\delta p/p = 5 \times 10^{-7}$, $\delta f/f = 2 \times 10^{-7}$)

Radioactive Decay of a Single Particle

Schottky noise signal of the decay of a single rare isotope prepared by stochastic pre-cooling and final electron cooling

Design Considerations for a Schottky Resonator in the ESR

- increased sensitivity to single ions
- faster detection of single ions
- \Rightarrow measurement of decay time with millisecond resolution
- **UHV** compatibility
- decoupling of the resonator from the beam at high intensity
- tuning range of resonant frequency
- frequency band width up to one percent \Rightarrow moderate Q
- choice of resonant frequency larger sensitivity <=> better time resolution (lower frequency) (higher frequency)
- mechanical dimensions of cavity (space restrictions)

G S II

Pillbox Type Cavity

Signal to Noise Ratio of a Single Particle

single particle power
$$P = \frac{1}{4}I^2R_S = \frac{1}{4}(qef_0)^2R_S$$

on resonance:

 $\begin{array}{ll} \mbox{quality factor} & Q_{unloaded} = 1130 \\ \mbox{shunt impedance} & R_s(\beta {=} 0.7 \) = 40 \ k\Omega \\ \mbox{signal power} & P = q^2 \times 1 {\times} 10^{-21} \ W \\ \mbox{frequency resolution} & \delta f/f = 10^{-6} \ (very \ cool \ beams, \ single \ particle) \\ \mbox{electronic noise floor} & dP_{noise}/df = -173 \ dBm = 5 \times 10^{-21} \ W/Hz \\ & P_{noise} < P(q) \ \Rightarrow \ q \geq 30 \end{array}$

GSI

HELMHOLTZ

Basic Resonator Design

GEMEINSCHAFT

Schottky Resonator Properties

Reduction of Quality Factor

Dielectric losses in ceramics

Losses in stainless steel inside vacuum chamber Partially exposed construction steel surface no problem, as larger band width is requested anyhow

AIR

GSI

HELMHOLTZ

GEMEINSCHAFT

New Schottky Resonator

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

New Resonator Cavity (pill box type) 124th harmonic of the revolution frequency

Measurement of Cooling Process

combined effect of stochastic and electron cooling

GEMEINSCHAFT

Measurement of Radioactive Decay

GEMEINSCHAFT

Measurement of Electron Capture Decay

$$^{142}Pm^{60+} + e^{-} \rightarrow {}^{142}Nd^{60+} + v_{e}$$

isotropic emission of neutrino \Rightarrow transfer of energy 90 eV to daughter ion

FAIR

GSI

HELMHOLTZ

GEMEINSCHAFT

Three Parent H-Like ¹⁴²Pm lons

Revolution Frequency Difference δf of the Recoils just after Decay

For a (longitudinally) unpolarized beam the distribution should have a rectangular shape

For a (steadily controlled) polarized beam the distribution would provide the helicity of the neutrino

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

momentum conservation:

from v_d and m_d one gets the momentum of the (monochromatic) neutrino: $(pc)_d = m_d cv_d = (pc)_v$

energy conservation:

from m_p and m_d one gets its energy: $E_v = (m_p - m_d) c^2$ and then $\beta_v = E_v / (pc)_v$

Stability of Revolution Frequency

GEMEINSCHAFT

Analysis of Cooling Process

GEMEINSCHAFT

Analysis of Cooling Process

Analysis of Cooling Process

GEMEINSCHAFT

High Sensitivity Measurement of Interaction with Matter

deceleration in residual gas

dp/p=1×10⁻⁵

deceleration in internal target

HELMHOLTZ

FAIR

GSI

Measurement of single ions allows the measurement of target effects without the uncertainty introduced by the beam spread

time

Isochronous Mode of the ESR for Mass Measurements of Short-lived Isotopes

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

operation at transition energy: negative dispersion in straight section makes revolution frequency independent of the beam momentum <u> $\eta = \mathbf{0} \Leftrightarrow \gamma = \gamma_t$ </u>, (transition energy γ_t)

HELMHOLTZ

GEMEINSCHAFT

ToF Detector

Resonator Measurement in Isochronous Mode

detection of the decay of a radioactive ion in the isochronous mode injected with a momentum spread of \pm 0.2 % (no cooling)

GEMEINSCHAFT

FAIR - Modularized Start Version (MSV)

FAIR

GEMEINSCHAFT

Schottky Resonators in the Collector Ring of FAIR

Schottky resonators for isochronous mass measurements will also be useful for diagnostics of antiprotons with CR01MH5 CR01KH7 high sensitivity CR01KS5

G 5 1

CR01MH6

CR01KH8

CR01KS6 CR01QS11

CR02KS6

CR02MH6

CR02KH8

HELMHOLTZ

GEMEINSCHAFT

Position Sensitive Schottky Resonator

M. Steck, NAPAC 2016, Chicago, IL, U.S.A., October 9 -14, 2016.

position dependent shunt impedance \Rightarrow Schottky noise signal power P(x)

thank you for your attention