Paper | Title | Page |
---|---|---|
WEPOA46 | The Muon Injection Simulation Study for the Muon g-2 Experiment at Fermilab | 803 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The new experiment, under construction at Fermilab, to measure the muon magnetic moment anomaly, aims to reduce measurement uncertainty by a factor of four to 140 ppb. The required statistics depend on efficient production and delivery of the highly polarized muon beams from production target into the g-2 storage ring at the design "magic"-momentum of 3.094 GeV/c, with minimal pion and proton contamination. We have developed the simulation tools for the muon transport based on G4Beamline and BMAD, from the target station, through the pion decay line and delivery ring and into the storage ring, ending with detection of decay positrons. These simulation tools are being used for the optimization of the various beam line guide field parameters related to the muon capture efficiency, and the evaluation of systematic measurement uncertainties. We describe the details of the model and some key findings of the study. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA46 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA57 | Using High Precision Beam Position Monitors at the Cornell Electron Storage Ring (CESR) to Measure the One Way Speed of Light Anisotropy | 399 |
|
||
Funding: NSF PHY-1416318 NSF DGE-1144153 The Cornell Electron Storage Ring (CESR) has been equipped with a number of high-precision beam position monitors which are capable of measuring the orbit of a circulating beam with a precision of a few microns. This technology will enable a precision measurement of deviations in the one-way speed of light. An anisotropic speed of light will alter the beam momentum as it travels around the ring, resulting in a change of orbit over the course of a sidereal day. Using counter-circulating electron and positron beams, we will be able to suppress many of the systematics such as those relating to variations in RF voltage or magnet strength. We show here initial feasibility studies to measure the stability of our beam position monitors and the various systematic effects which may hide our signal and discuss ways in which we can minimize their impact. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA57 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA58 | Minimization of Emittance at the Cornell Electron Storage Ring With Sloppy Models | 402 |
SUPO03 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: DOE DE-SC0013571 NSF DGE-1144153 Our current method to minimize the vertical emittance of the beam at the Cornell Electron Storage Ring (CESR) involves measurement and correction of the dispersion, coupling, and orbit of the beam and lets us reach emittances of 10 pm, but is limited by finite dispersion measurement resolution.* For further improvement in the vertical emittance, we propose using a method based on the theory of sloppy models.** The storage ring lattice permits us to identify the dependence of the dispersion and emittance on our corrector magnets, and taking the singular value decomposition of the dispersion/corrector Jacobian gives us the combinations of these magnets which will be effective knobs for emittance tuning, ordered by singular value. These knobs will permit us to empirically tune the emittance based on direct measurements of the vertical beam size. Simulations show that when starting from a lattice with realistic alignment errors which has been corrected by our existing method to have an emittance of a few pm, this new method will enable us to reduce the emittance to nearly the quantum limit, assuming that vertical dispersion is the primary source of our residual emittance. * J. Shanks, D.L. Rubin, and D. Sagan, Phys. Rev. ST Accel. Beams 17, 044003 (2014). ** K.S. Brown and J.P. Sethna, Phys. Rev. E 68, 021904 (2003). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA58 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEA2CO03 | Incoherent Vertical Emittance Growth from Electron Cloud at CesrTA | 672 |
|
||
Funding: Work supported by the US National Science Foundation PHY-1416318, PHY-0734867, and PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538. We report on measurements of electron cloud (EC) induced tune shifts and emittance growth at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) with comparison to tracking simulation predictions. Experiments were performed with 2.1 GeV positrons in a 30 bunch train with 14 ns bunch spacing and 9 mm bunch length, plus a witness bunch at varying distance from the train to probe the cloud as it decays. Complementary data with an electron beam were obtained to distinguish EC effects from other sources of tune shifts and emittance growth. High resolution electric field maps are computed with EC buildup simulation codes (ECLOUD) in the small region around the beam as the bunch passes through the cloud. These time-sliced field maps are input to a tracking simulation based on a weak-strong model of the interaction of the positron beam (weak) with the electron cloud (strong). Tracking through the full lattice over multiple radiation damping times with electron cloud elements in the dipole and field-free regions predict vertical emittance growth, and tune shifts in agreement with the measurements. |
||
![]() |
Slides WEA2CO03 [1.227 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA2CO03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOB36 | Upgrade of the Cornell Electron Storage Ring as a Synchrotron Light Source | 980 |
|
||
Funding: NSF-DMR 13-32208 The planned upgrade of the Cornell Electron Storage Ring as an X-ray source for CHESS will include an increase in beam energy and decrease in emittance from 100 nm-rad at 5.3 GeV to 30 nm-rad at 6 GeV, increase in beam current from 120 to 200 mA, continuous top-off injection of the single circulating beam, and four new zero dispersion inser- tion straights that can each accommodate a pair of canted undulators. The existing sextant of the storage ring arc that serves as the source for all of the CHESS X-ray beam lines will be reconfigured with 6 double-bend achromats, each consisting of two pairs of horizontally focusing quadrupoles, and a single pair of combined-function gradient bend magnets. The chromaticity will be compensated by the existing sextupoles in the legacy FODO arcs. We describe details of the linear optics, sextupole distributions to maximize dynamic aperture and injection efficiency, and characterization of magnetic field and alignment error tolerance. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB36 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |