Author: Maxson, J.M.
Paper Title Page
THA2CO03 New 1.4 Cell RF Photoinjector Design for High Brightness Beam Generation 1083
SUPO33   use link to see paper's listing under its alternate paper code  
 
  • E. Pirez, P. Musumeci
    UCLA, Los Angeles, California, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  Funding: This work was partially funded by NSF grant 145583
The new electromagnetic and mechanical designs of the S-band 1.4 cell photoinjector are discussed. A novel fabrication method is adopted to replace the brazing process with a clamping technique achieving lower breakdown probability. The photoinjector is designed to operate at a 120 MV/m gradient and an optimal injection phase of 70 degrees to improve the extraction field by a factor of 1.9 compared to standard 1.6 cell designs with the same peak field. New geometries and features are implemented to improve beam quality for the demand of high brightness beam applications.
 
slides icon Slides THA2CO03 [2.444 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA2CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA59 Successful Laboratory-Industrial Partnerships: the Cornell-Friatec Segmented Insulator for High Voltage DC Photocathode Guns 405
 
  • K.W. Smolenski, B.M. Dunham
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D.L. Barth, M. Muehlbauer, S. Wacker
    FRIATEC AG, Mannheim, Germany
  • J.M. Maxson
    UCLA, Los Angeles, California, USA
 
  High voltage DC photocathode guns currently offer the most reliable path to electron beams with high current and brightness. The performance of a gun is directly dependent on its vacuum and high voltage capabilities, determined in large part by the ceramic insulators. The insulator must meet XHV standards, bear the load of pressurized SF6 on its exterior, support the massive electrode structures as well as holding off DC voltages up to 750kV. Construction of UHV and high voltage capable insulators require high purity ceramics and metal components proven to minimize thermal stress between the brazed ceramic rings and metal guard rings. The use of replaceable guard rings is a critical way of controlling manufacturing costs while extending the life cycle of the insulator. Successful fabrication requires proven manufacturing methods in flatness, parallelism, and maintaining alignment of many parts during the brazing process. Taking a scalable, modular approach, the insulator design can be applied to a variety of gun voltages and can be used by other projects. The Cornell-Friatec insulator was designed collaboratively and has now been produced in quantity for Cornell and elsewhere.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA59  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)