Paper | Title | Page |
---|---|---|
MOA3CO03 | Bunch Shape Monitor Measurements at the LANSCE Linac | 25 |
|
||
Two Bunch Shape Monitors (BSM) [1] have been developed, fabricated and assembled for the first direct longitudinal beam measurements at the Los Alamos Neutron Science Center (LANSCE) linear accelerator (linac). The BSM detectors use different radio frequencies for the deflecting field: first harmonic (201.25 MHz) and second harmonic (402.5 MHz) of fundamental accelerator radio frequency. The first BSM is designed to record the proton beam longitudinal phase distribution after the new RFQ accelerator at a beam energy of 750 keV with phase resolution of 1.0 degree and covering phase range of 180 degree at 201.25 MHz. The second BSM is installed between DTL tanks 3 and 4 of the LANSCE linac in order to scan both H+ and H− beams at a beam energy of 73 MeV with a phase resolution up to 0.5 degree in the phase range of 90 degree at 201.25 MHz. Preliminary results of bunch shape measurements for both beams under different beam gates (pulse length of 150 us, 1 Hz repetition rate, etc.) will be presented and compared high performance simulation results (HPSIM) [2].
[1] A. Feschenko, Proc. of RUPAC2012, FRXOR01, Saint Petersburg, Russia, pp. 181 - 185. [2] X. Pang, L. Rybarcyk, and S. Baily, Proc. of HB2014, MOPAB30, East Lansing, MI, USA, pp. 99-102. |
||
![]() |
Slides MOA3CO03 [4.942 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA3CO03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUB4IO01 | Status of the Los Alamos Multi-Probe Facility for Matter-Radiation Interactions in Extremes | 464 |
|
||
The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance and production of materials at the mesoscale. MaRIE will characterize the behavior of interfaces, defects, and microstructure between the spatial scales of atomic structures and those of the engineering continuum where there is a current capability gap. The mission need is well-met with an x-ray source, coherent to optimize disordered imaging capability, brilliant and high-rep-rate to provide time-dependent information, and high enough energy to see into and through the mesoscale of materials of interest. It will be designed for time-dependence from electronic motion (picosecond) through sound waves (nanosecond) through thermal diffusion (millisecond) to manufacturing (seconds and above). The mission need, the requirements, a plausible alternative reference design of a 12-GeV linac-based 42-keV x-ray free-electron laser, and the status of the project will be described. | ||
![]() |
Slides TUB4IO01 [16.013 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB4IO01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |