Author: Cornacchia, M.
Paper Title Page
TUB1CO02 Operating Synchrotron Light Sources with a High Gain Free Electron Laser 259
 
  • S. Di Mitri, M. Cornacchia
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The peak current required by a high gain free electron laser (FEL) is not deemed to be compatible with the multi-bunch filling pattern of synchrotrons. We show that this problem can be overcome by virtue of magnetic bunch length compression in a ring section and that, after lasing, the beam returns to equilibrium conditions without beam quality disruption*. As a consequence of bunch length compression, the peak current stimulates a high gain FEL emission, while the large energy spread makes the beam less sensitive to the FEL heating and to the microwave instability. The beam large energy spread is matched to the FEL energy bandwidth through a transverse gradient undulator. Feasibility of lasing at 25 nm is shown for the Elettra synchrotron light source (SLS) at 1 GeV. Viable scenarios for the upgrade of existing or planned SLSs to the new hybrid insertion devices-plus-FEL operational mode are discussed, while ensuring little impact on the standard beamlines functionality.
* S. Di Mitri and M. Cornacchia, NJP 17 (2015) 113006
 
slides icon Slides TUB1CO02 [2.353 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB1CO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA06 CSR-Immune Arc Compressors for Recirculating Accelerators Driving High Brightness Electron Beams 1108
 
  • S. Di Mitri, M. Cornacchia
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The advent of short electron bunches in high brightness linear accelerators has raised the awareness of the accelerator community to the degradation of the beam transverse emittance by coherent synchrotron radiation (CSR) emitted in magnetic bunch length compressors, transfer lines and turnaround arcs. We reformulate the concept of CSR-driven beam optics balance, and apply it to the general case of varying bunch length in an achromatic cell*. The dependence of the CSR-perturbed emittance to beam optics, mean energy, and bunch charge is shown. The analytical findings are compared with particle tracking results**. Practical considerations on CSR-induced energy loss and nonlinear particle dynamics are included. As a result, we identify the range of parameters that allows feasibility of an arc compressor in a recirculating accelerator driving, for example, a free electron laser or a linear collider.
*S. Di Mitri and M. Cornacchia, EPL, 109 (2015) 62002
**S. Di Mitri, NIM A 806 (2016) 184'192
 
poster icon Poster THPOA06 [0.616 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)