

Operating Synchrotron Light Sources with a <u>High Gain</u> FEL

S. Di Mitri, M. Cornacchia, B. Diviacco

Elettra Sincrotrone Trieste

Re-elaborating S. Di Mitri and M. Cornacchia, NJP 17, 113006 (2015)

Simone Di Mitri – simone.dimitri@elettra.eu 1

Idea and Challenges

By-Pass figure from K.-J. Kim et al., IEEE Trans. Nucl. Sci. 32, 5 (**1985**).

Idea:

- Upgrade an existing storage ring to drive a high gain FEL (i.e., mirrorless)
- $\lambda \approx EUV$ and soft X-rays
- $P_{FEL} \ge 1 W$

Challenges:

- Compatibility with multi-bunch IDs operation
- High e-beam brightness required by FEL
- SR+FEL equilibrium state
- CSR- and MBC-instability

NAPAC 2016, Chicago, IL, USA

Storage Ring and RF Parameters

□ Keep the Elettra DBA-lattice as it is, and lower the beam energy to match $4\pi\epsilon_x \approx \lambda = 25$ nm.

RF Linacs in a Ring ??

- SC HOMs-damped multi-cell cavities might provide $E_z \sim 20 \text{ MV/m}$, but they stay on for milliseconds...
- NC (pulsed) cavities not available (yet) with HOMs damping at <I> ~ 300 mA.
 - In small rings, RF cavities should be installed in by-pass lines.
 - Strip-line kickers: rep. rate 0.1-1 MHz , < 5 ns rise/fall time, < 100 ns flat top, ~1% stability
 - **RF transverse deflectors** [T.Naito et al., NIMA 571 (2009)] [M.Placidi et al., NIMA 768 (2014)]
 - For rings larger than C~500 m, arc compressors and RF linacs can be internal to the main ring.
 - Swap out injection

Microwave Instability

□ The higher the peak current, the higher the uncorrelated energy spread \Rightarrow MWI is "naturally" suppressed by a factor C².

CSR-Induced ε_x -Growth

Storage Ring Lattice (DBA)

• At least 3 families of sextupoles, for linear compression, $\epsilon_{\rm x}\text{-control}$ and large DA.

[S. Di Mitri, M. Cornacchia, EPL 109, 62002 (2015)] [S. Di Mitri, NIM A 806 (2016)]

□ Arcs to/from By-Pass

- Isochronous achromatic lattice.
- CSR- ε_x growth is suppressed through optics "balance".

[D. Douglas et al., JLAB-ACP-14-1751 (2014)] [S. Di Mitri et al., PRL 110, 014801 (2013)]

SR + SASE FEL, Single-Pass

□ After lasing once every longitudinal damping time ($T_{FEL} \ge \tau_E \approx 10 \text{ ms}$), the beam "thermalizes" to standard SR-equilibrium state.

Elettra Sincrotrone Trieste

SR + SASE FEL, at Equilibrium

□ Lasing ~every turn ($T_{FEL} << \tau_E$) imposes new equilibrium parameters, set by synchrotron radiation damping and FEL excitation.

- **1.** Numerical solution for $\sigma_{\delta}(t \rightarrow \infty)$, with $\Delta \sigma_{\delta,FEL}$ as a function of the undulator length [*Z. Huang et al., NIM A* 593 (2008)].
- 2. Approximate closed-form for $\sigma_{\delta}(t \rightarrow \infty)$, with $\Delta \sigma_{\delta,\text{FEL}}$ at saturation.

3. Tracking of the Beam-Matrix turn-by-turn, for arbitrary undulator length. NAPAC 2016, Chicago, IL, USA Simone Di Mitri – simone.dimitri@elettra.eu 9

Numerical Solution

□ The undulator length can be chosen to tune the FEL power vs. the beam energy spread at equilibrium. The FEL can be far from saturation.

Tracking the Beam Matrix

□ **Beam Matrix** through SR+FEL loop: $\frac{\sum_{i+1} = M\sum_i M^i}{\sum_i M^i}$, where [M] describes: bunch length compression \rightarrow RF focusing \rightarrow SR damping & anti-damping \rightarrow SASE FEL \rightarrow de-compression

Beam transverse emittance degrades due to emission of photons in the dispersive line of the TGU :

Conclusions

□ No physical show-stoppers to SR-HG SASE-FEL in EUV

Expected <P_{FEL} > ~ 1-100 W depending on the rep. rate of the extraction system (0.05 - 100 kHz).

Upgrading existing 3-GeV SRs requires:

- 30 150 m long TGU
- 20 100 MV RF cavities
- by-pass lines to host RF cavities / internal arc compressors
- fast kickers / swap-out inj.-extr. system

Emittance growth in the TGU is main obstacle to efficient lasing below ~10 nm

Detailed feasibility study is on-going...

12

Acknowledgments

NAPAC SPC for the chance of this talk.

F. Parmigiani and R. Hettel for invaluable discussions.

M. Placidi, Z. Huang, A. Zholents and R. Lindberg for suggestions and guidelines.

E. Karantzoulis, M. Svandrlik (Project Leaders) and Elettra Industrial Liason Office for support.

Thank You for Your attention

Comparison of SR-FEL Studies

Low repetition rate HG-FEL (lasing every τ_E or so)

	λ [nm]	#photons/ pulse	P _{pk} /pulse [MW]	<p<sub>tot> [W]</p<sub>	Compatible with ID-Beamlines ?
LBNL (1984)	40	~10 ¹⁵	100	0.1	NO
PEP (1998)	4	~10 ¹⁴	460	0.03	NO
PEPX (2013)	1.5	~10 ¹²	200	2	NO
ELETTRA (2015)	25	~ 10 ¹³	100	2 (400 bs)	YES
FERMI FEL1	25	~10 ¹³	1000	0.005	Warm Linac

□ High repetition rate HG-FEL (lasing every turn or so)

	λ [nm]	#photons /pulse	P _{pk} /pulse [MW]	<p<sub>tot> [W]</p<sub>	Compatible with ID-Beamlines ?
PEPX (2008)	3.3	~1011	0.2	0.7	NO
ELETTRA (2015)	25	~10 ¹¹	1	200 (400 bs)	YES