Paper | Title | Other Keywords | Page |
---|---|---|---|
WEOAM04 | Development of Low-Frequency Superconducting Cavities for High Energy Photon Source | cavity, cryomodule, photon, superconducting-cavity | 129 |
|
|||
Funding: This work was supported in part by High Energy Photon Source, and in part by the National Natural Science Foundation of China under Grant 12005241. A low-frequency superconducting cavity is one of the most critical devices in the High Energy Photon Source (HEPS), a 6 GeV diffraction-limited synchrotron light source under construction in Beijing. A higher-order-mode (HOM) damped 166.6 MHz ß=1 quarter-wave superconducting cavity, first of its kind in the world, has been designed by the Institute of High Energy Physics. Compact structure, excellent electromagnetic and mechanical properties and manufacturability were realized. Mounted with a forward power coupler, a tuner, two thermal break beam tubes, a collimating taper transition, two gate valves and some shielded bellows, the dressed cavity was then assembled into a cryomodule. Two cryomodules were later required to fit into HEPS straight sections with a length limitation of 6 meters, which posed a significant challenge for the design of the cavity string. The success of the horizontal test also verifies the design of the cavity string. This article presents the design, fabrication, post-processing, system integration, and cryogenic tests of the first HOM-damped compact 166.6 MHz superconducting cavity module. |
|||
![]() |
Slides WEOAM04 [23.093 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOAM04 | ||
About • | Received ※ 25 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP013 | Studies on the Influences of Longitudinal Gradient Bending Magnet Fabrication Tolerances on the Field Quality for SILF Storage Ring | storage-ring, radiation, extraction, synchrotron | 296 |
|
|||
The advanced storage ring of 4th generation synchrotron radiation facility, known as the diffraction-limited storage ring (DLSR), is based on multi-bend achromat (MBA) lattices, which enable an emittance reduction of one to two orders of magnitude pushing beyond the radiation brightness and coherence reached by the 3rd generation storage ring. The longitudinal gradient bending (LGB) magnets, with multiple magnetic field stages in beam line direction, are required in the DLSR to reduce the emittance. The permanent magnet based LGB magnets are selected for the Shenzhen Innovation Light-source Facility (SILF) due to the advantages of operation economy, compactness and stability compare to the electro-magnet. In this paper, the influences of typical LGB magnet fabrication tolerances on the field qualities are presented using a dedicated parameterized finite element (FE) model, such as the poles height and width tolerances, the pole tips parallelism (in different orientations) and etc. Meanwhile the influences of permanent magnets discreteness and the magnetic forces (between top and bottom pole tips) induced yoke deformation on the field qualities are studied and presented. | |||
![]() |
Poster THPPP013 [0.599 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP013 | ||
About • | Received ※ 27 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 08 May 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP016 | Numerical and Experimental Studies to Evaluate the Conservative Factor of the Convective Heat Transfer Coefficient Applied to the Design of Components in Particle Accelerators | experiment, simulation, synchrotron, storage-ring | 306 |
|
|||
The fluid boundary condition applied to the design of components in Particle Accelerators is calculated as a global variable through experimental correlations coming from the literature. This variable, defined as the Convective Heat Transfer Coefficient, is obtained using the correlations of Dittus and Boelter (1930), Sieder and Tate (1936), Petukhov (1970), Gnielinski (1976), among others. Although the designs based on these correlations work properly, the hypothesis of the present study proposes that the effectiveness of these approximations is due to the existence of a significant and unknown conservative factor between the real phenomenon and the global variable. To quantify this conservative factor, this work presents research based on Computational Fluid Dynamics (CFD) and experimental studies. In particular, recent investigations carried out at ALBA confirm in a preliminary way our hypotheses for circular pipes under fully and non-fully developed flow conditions. The conclusions of this work indicate that we could dissipate the required heat with a flowrate lower than that obtained by applying the experimental correlations. | |||
![]() |
Poster THPPP016 [1.419 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP016 | ||
About • | Received ※ 24 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 March 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP023 | Design and Test of a New Crystal Assembly for a Double Crystal Monochromator | monitoring, vacuum, synchrotron, photon | 313 |
|
|||
Vertical diffraction monochromator is a typical optical device in synchrotron radiation device. Its main requirements and characteristics are high Angle accuracy and stability. Due to the high requirements of new light sources, high precision and high stability have become a common difficulty. This paper mainly introduces the design and test of an internal crystal module of HDCM. There are two main parts: the first crystal and the second crystal. The first crystal assembly includes crystal cooling and clamping, using microchannel edge cooling and flat plate clamping schemes. The second crystal component, through the motor to the top, drives the flexible hinge, and then realizes the rotation of the crystal. At the same time, the Angle monitoring system is designed. The design scheme is verified by processing. The shape of the clamping surface of a crystal component meets the requirements of use. The motion test of the two crystal components is carried out in the atmosphere, vacuum and low temperature vacuum environment, and the results are much higher than the required parameters. And the whole stability is tested. It has high stability. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP023 | ||
About • | Received ※ 02 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 19 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||