Paper | Title | Page |
---|---|---|
TUPYP017 | Design and Test of Precision Mechanics for High Energy Resolution Monochromator at the HEPS | 51 |
|
||
A monochromator stands as a typical representative of optical component within synchrotron radiation light sources. High resolution monochromators (HRMs), which incorporate precision positioning, stability control, and various other technologies, are a crucial subclass within this category. The next generation of photon sources imposes higher performance standards upon these HRMs. In this new design framework, the primary focus is on innovating precision motion components. Rigorous analysis and experimentation have confirmed the effectiveness of this design. This structural model provides valuable reference for developing other precision adjustment mechanisms within the realm of synchrotron radiation. | ||
Poster TUPYP017 [3.641 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP017 | |
About • | Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 04 February 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP018 | Design and Improvements of a Cryo-Cooled Horizontal Diffracting Double Crystal Monochromator for HEPS | 55 |
|
||
Horizontal diffracting double crystal monochromator(HDCM) are usually used in a 4th generation light source beamline due to the larger source size in the horizontal direction. This paper introduces the mechanical design and optimization of a HDCM for Low-dimension Structure Probe Beamline of HEPS. In order to achieve the high stability requirement of 50nrad RMS, the structural design is optimized and modal improved through FEA. In order to meet the requirement of a total crystal slope error below 0.3¿rad, FEA optimizations of the clamping for first and second crystal are carried out. The vacuum chamber is optimized to become more compact, improving the maintainability. Fabrication of the HDCM is under way. The results show that the design is capable of guarantee the required surface slope error, stability, and adjustment requirements. | ||
Poster TUPYP018 [1.172 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP018 | |
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 May 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOBM07 | Design, Modeling and Analysis of a Novel Piezoactuated XY Nanopositioner Supporting Beamline Optical Scanning | 150 |
|
||
In recent years, with the advancement of X-ray optics technology, the spot size of synchrotron beamlines has been reduced to 10nm or even smaller. The reduction in spot size and the emergence of ultra-bright synchrotron sources necessitate higher stability, resolution, and faster scanning speeds for positioning systems. This paper presents the design, analysis, and simulation of an XY piezoelectric driven nanopositioning platform that supports high-precision optical scanning systems. To achieve fast and highly precise motion under the load of an optical system, a design scheme based on a hollow structure with flexible amplification and guiding mechanisms is proposed. This scheme increases displacement output while minimizing coupling displacement to ensure a high natural frequency. The rationality of this platform design is verified through modeling and finite element simulation. | ||
Slides WEOBM07 [3.448 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM07 | |
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 04 November 2023 — Issued ※ 18 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOBM03 |
Progress and Core Technologies Development of Monochromators for HEPS | |
|
||
HEPS is the first low emittance 4th generation light source in China, as monochromators are often limiting the performance of beamlines, many challenges are faced to preserve the quality of the beam. In order to meet the stringent and versatile requirements of 12 in house developed monochromators for different beamlines, several core technologies have been studied and developed. Stability considerations, vibration measurement system and methods are introduced, stability below 10 nrad RMS are measured for operation conditions by laser interferometers. Thermal resistance study at low temperature was carried out, enabling more accurate FEA of cooling. Clamping deformation of crystals at low temperature are experimentally studied, slope errors below 0.1 microradian RMS are measured. Design and test results on different types of monochromators will also be presented. Results show that the in house developed monochromators are able to meet the requirements of HEPS beamlines. | ||
Slides THOBM03 [8.445 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPPP023 | Design and Test of a New Crystal Assembly for a Double Crystal Monochromator | 313 |
|
||
Vertical diffraction monochromator is a typical optical device in synchrotron radiation device. Its main requirements and characteristics are high Angle accuracy and stability. Due to the high requirements of new light sources, high precision and high stability have become a common difficulty. This paper mainly introduces the design and test of an internal crystal module of HDCM. There are two main parts: the first crystal and the second crystal. The first crystal assembly includes crystal cooling and clamping, using microchannel edge cooling and flat plate clamping schemes. The second crystal component, through the motor to the top, drives the flexible hinge, and then realizes the rotation of the crystal. At the same time, the Angle monitoring system is designed. The design scheme is verified by processing. The shape of the clamping surface of a crystal component meets the requirements of use. The motion test of the two crystal components is carried out in the atmosphere, vacuum and low temperature vacuum environment, and the results are much higher than the required parameters. And the whole stability is tested. It has high stability. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP023 | |
About • | Received ※ 02 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |