Author: Jiang, S.K.
Paper Title Page
TUPYP027 A Subnanometer Linear Displacement Actuator 70
 
  • S.K. Jiang, X.W. Du, Q.P. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  With the de­vel­op­ment of syn­chro­tron ra­di­a­tion tech­nol­ogy, an ac­tu­a­tor with sub-nanome­ter res­o­lu­tion, 100N dri­ving force, and com­pat­i­ble with ul­tra-high vac­uum en­vi­ron­ment is re­quired. To achieve syn­chro­tron ra­di­a­tion mi­cro-nano fo­cus­ing with ad­just­ment res­o­lu­tion of sub-nanome­ter and high-pre­ci­sion ro­ta­tion at the nano-arc level, most of the com­mer­cial piezo­elec­tric ac­tu­a­tors are dif­fi­cult to meet the re­quire­ments of res­o­lu­tion and dri­ving force at the same time. The flex­ure-based com­pound bridge-type hinge has the char­ac­ter­is­tic of am­pli­fy­ing or re­duc­ing the input dis­place­ment by a cer­tain mul­ti­ple, and can be used in an ul­tra-high vac­uum en­vi­ron­ment. Ac­cord­ing to this char­ac­ter­is­tic, the bridge-type com­pos­ite flex­i­ble hinge can be com­bined with com­mer­cial piezo­elec­tric ac­tu­a­tors, to de­sign a new ac­tu­a­tor with sub-nanome­ter res­o­lu­tion and a dri­ving force of 100N. This poster mainly pre­sents the prin­ci­ple of the new ac­tu­a­tor, the de­sign of the pro­to­type and the pre­lim­i­nary test re­sults of its res­o­lu­tion, stroke.  
poster icon Poster TUPYP027 [3.140 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP027  
About • Received ※ 25 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 25 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP028 Thermal Analysis Software for Optical Elements of Hefei Advanced Light Facility* 73
 
  • M.H. Lin, J. Chen, S.K. Jiang, Q.P. Wang, Z. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Ther­mal de­for­ma­tion is a key in­flu­enc­ing fac­tor in the sur­face shape of op­ti­cal com­po­nents for beam­line op­tics. In the process of beam­line de­sign, it is nec­es­sary not only to se­lect dif­fer­ent cool­ing schemes based on ther­mal load­ing con­di­tions but also to ex­ten­sively op­ti­mize the pa­ra­me­ters of these cool­ing schemes. The tra­di­tional ap­proach for op­ti­miz­ing cool­ing scheme de­sign often re­quires sig­nif­i­cant man­ual ef­fort. By in­te­grat­ing ex­ist­ing ex­pe­ri­ence in op­ti­miz­ing cool­ing scheme de­signs, this study trans­forms the pa­ra­me­ter­ized de­sign tasks that were orig­i­nally per­formed man­u­ally into au­to­mated processes using soft­ware. This paper pre­sents the lat­est ad­vance­ments in the au­to­mated de­sign soft­ware for cool­ing schemes of beam­line op­ti­cal com­po­nents, and the re­sults in­di­cate that the op­ti­miza­tion out­comes of the ex­ist­ing au­to­mated de­sign soft­ware are close to those achieved through man­ual op­ti­miza­tion.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP028  
About • Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 03 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)